首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An orally bioavailable acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor, avasimibe (CI-1011), was used to test the hypothesis that inhibition of cholesterol esterification, in vivo, would reduce hepatic very low density (VLDL) apolipoprotein (apo) B secretion into plasma. ApoB kinetic studies were carried out in 10 control miniature pigs, and in 10 animals treated with avasimibe (10 mg/kg/d, n = 6; 25 mg/kg/d, n = 4). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/d; 0.1%). Avasimibe decreased the plasma concentrations of total triglyceride, VLDL triglyceride, and VLDL cholesterol by 31;-40% 39-48%, and 31;-35%, respectively. Significant reductions in plasma total cholesterol (35%) and low density lipoprotein (LDL) cholesterol (51%) concentrations were observed only with high dose avasimibe. Autologous 131I-labeled VLDL, 125I-labeled LDL, and [3H]leucine were injected simultaneously into each pig and apoB kinetic data were analyzed using multicompartmental analysis (SAAM II). Avasimibe decreased the VLDL apoB pool size by 40;-43% and the hepatic secretion rate of VLDL apoB by 38;-41%, but did not alter its fractional catabolism. Avasimibe decreased the LDL apoB pool size by 13;-57%, largely due to a dose-dependent 25;-63% in the LDL apoB production rate. Hepatic LDL receptor mRNA abundances were unchanged, consistent with a marginal decrease in LDL apoB FCRs. Hepatic ACAT activity was decreased by 51% (P = 0.050) and 68% (P = 0.087) by low and high dose avasimibe, respectively. The decrease in total apoB secretion correlated with the decrease in hepatic ACAT activity (r = 0.495; P = 0.026).We conclude that inhibition of hepatic ACAT by avasimibe reduces both plasma VLDL and LDL apoB concentrations, primarily by decreasing apoB secretion.  相似文献   

2.
An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.  相似文献   

3.
Kinetics of apo B and apo AI were assessed in 8 patients with mixed hyperlipidemia at baseline and after 8 weeks of atorvastatin 80 mg q.d. and micronised fenofibrate 200 mg q.d. in a cross-over study. Both increased hepatic production and decreased catabolism of VLDL accounted for elevated cholesterol and triglyceride concentrations at baseline. Atorvastatin significantly decreased triglyceride, total, VLDL and LDL cholesterol and apo B concentrations (-65%, -36%, -57%, -40% and -33%, respectively, P<0.05). Kinetic analysis revealed that atorvastatin stimulated the catabolism of apo B containing lipoproteins, enhanced the delipidation of VLDL1 and decreased VLDL1 production. Fenofibrate lowered triglycerides and VLDL cholesterol (-57% and -64%, respectively, P<0.05) due to enhanced delipidation of VLDL1 and VLDL2 and increased VLDL1 catabolism. Changes of HDL particle composition accounted for the increase of HDL cholesterol during atorvastatin and fenofibrate (18% and 23%, P<0.01). Only fenofibrate increased apo AI concentrations through enhanced apo AI synthesis (45%, P<0.05). We conclude that atorvastatin exerts additional beneficial effects on the metabolism of apo B containing lipoproteins unrelated to an increase in LDL receptor activity. Fenofibrate but not atorvastatin increases apo AI production and plasma turnover.  相似文献   

4.
Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favorably affect the multitude of cardiovascular risk factors associated with the metabolic syndrome. To achieve maximal effectiveness, an ACC inhibitor should inhibit both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2). Herein, we describe the biochemical and acute physiological properties of CP-610431, an isozyme-nonselective ACC inhibitor identified through high throughput inhibition screening, and CP-640186, an analog with improved metabolic stability. CP-610431 inhibited ACC1 and ACC2 with IC50s of approximately 50 nm. Inhibition was reversible, uncompetitive with respect to ATP, and non-competitive with respect to bicarbonate, acetyl-CoA, and citrate, indicating interaction with the enzymatic carboxyl transfer reaction. CP-610431 also inhibited fatty acid synthesis, triglyceride (TG) synthesis, TG secretion, and apolipoprotein B secretion in HepG2 cells (ACC1) with EC50s of 1.6, 1.8, 3.0, and 5.7 microm, without affecting either cholesterol synthesis or apolipoprotein CIII secretion. CP-640186, also inhibited both isozymes with IC50sof approximately 55 nm but was 2-3 times more potent than CP-610431 in inhibiting HepG2 cell fatty acid and TG synthesis. CP-640186 also stimulated fatty acid oxidation in C2C12 cells (ACC2) and in rat epitrochlearis muscle strips with EC50s of 57 nm and 1.3 microm. In rats, CP-640186 lowered hepatic, soleus muscle, quadriceps muscle, and cardiac muscle malonyl-CoA with ED50s of 55, 6, 15, and 8 mg/kg. Consequently, CP-640186 inhibited fatty acid synthesis in rats, CD1 mice, and ob/ob mice with ED50s of 13, 11, and 4 mg/kg, and stimulated rat whole body fatty acid oxidation with an ED50 of approximately 30 mg/kg. Taken together, These observations indicate that isozyme-nonselective ACC inhibition has the potential to favorably affect risk factors associated with the metabolic syndrome.  相似文献   

5.
The microsomal triglyceride transfer protein (MTP) is essential for the hepatic secretion of apolipoprotein (apo) B-containing lipoproteins. Previous studies have indicated that inhibition of MTP results in decreased apoB plasma levels and decreased hepatic triglyceride secretion. However, the metabolic effects of overexpression of MTP have not been investigated. We constructed a recombinant adenovirus expressing MTP (AdhMTP) and used it to assess the effects of hepatic overexpression of MTP in mice. Injection of AdhMTP into C57BL/6 mice resulted in a 3-fold increase in hepatic microsomal triglyceride transfer activity compared to mice injected with Adnull. On day 4 after virus injection, AdhMTP-injected mice had significantly elevated plasma TG levels as compared to control virus (Adnull)-injected mice. Hepatic TG secretion rates were significantly greater in AdhMTP-injected mice (184 +/- 12 mg/kg/h) compared with Adnull-injected mice (65 +/- 9 mg/kg/h, P < 0.001). In addition, hepatic very low density lipoprotein (VLDL) apoB secretion in the AdhMTP-injected group was 74% higher than in the control virus group. Hepatic secretion of apoB-48 and apoB-100 contributed equally to this increase.These results provide the first data that hepatic overexpression of MTP results in increased secretion of VLDL-triglycerides as well as VLDL-apoB in vivo. These results suggest that MTP is rate-limiting for VLDL apoB secretion in wild-type mice under basal chow-fed conditions.  相似文献   

6.
7.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

8.
The level of maternal circulating triglycerides during late pregnancy has been correlated to newborns' weight in humans. To investigate the response to fenofibrate, a hypotriglyceridemic agent, in pregnant rats, 0, 100, or 200 mg of fenofibrate/kg body weight as oral doses were given twice a day from day 16 of gestation and studied at day 20. Virgin rats were studied in parallel. Liver weight was higher in pregnant than in virgin rats, and either dose of fenofibrate increased this variable in both groups. The highest dose of fenofibrate decreased fetal weight. Although plasma triglycerides decreased during the first 2 days of fenofibrate treatment in pregnant rats, the effect disappeared on day 3, and plasma triglycerides were even enhanced at day 4. In virgin rats, fenofibrate decreased plasma triglycerides throughout the experiment. Plasma cholesterol levels in pregnant rats decreased during the first 3 days of treatment, and the effect disappeared on day 4, whereas in virgin rats, values remained decreased. Changes in plasma triglycerides paralleled those of VLDL triglycerides. In pregnant rats, VLDL cholesterol levels increased while LDL cholesterol decreased with the treatment, whereas in virgin rats, cholesterol levels decreased in all lipoprotein fractions. Only in virgin rats did liver triglyceride concentration increase with fenofibrate treatment. Lumbar adipose tissue LPL was lower in pregnant than in virgin rats, and fenofibrate treatment decreased this variable in both groups. Maternal fenofibrate treatment increased fetal plasma and liver triglyceride and cholesterol concentrations.It is proposed that the opposite effects of fenofibrate treatment in virgin and pregnant rats are a consequence of both the enhanced liver capability for VLDL triglyceride production and a rebound response to the drug in the latter.  相似文献   

9.
Very-low-density lipoprotein assembly and secretion   总被引:8,自引:0,他引:8  
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.  相似文献   

10.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

11.
Lipoproteins that are removed from the circulation by the liver can deliver both cholesterol and triglycerides to the hepatocyte. Relative proportions of these lipids may vary in lipoproteins and, thus, their uptake may have differing effects on cholesterol homeostasis. To study this, lipoproteins containing the same amounts of cholesterol but different amounts of triglyceride were administered to intact rats or to an isolated perfused rat liver. The responses of acyl coenzyme A:cholesterol acyltransferase (ACAT), very low density lipoprotein (VLDL) triglyceride and cholesterol secretion, and biliary cholesterol content were examined after 2 hr. Administration of triglyceride-rich chylomicrons (average triglyceride:cholesterol = 136.5 by mass) in vivo or their remnants (average triglyceride:cholesterol = 32.7 by mass) to the perfused liver resulted in an 80% decrease in ACAT activity. In the perfused liver system, VLDL cholesterol and triglyceride secretion was increased while biliary cholesterol content decreased. Administration of standard chylomicrons (average triglyceride:cholesterol = 33.9 by mass) or their remnants (average triglyceride:cholesterol = 11.4 by mass) lowered ACAT activity by 24% in vivo, but had no significant effect on any of the parameters measured in the perfused liver system. Administration of cholesterol-rich VLDL (average triglyceride:cholesterol = 0.47 by mass) in vivo increased ACAT activity 1.4-fold, but administration of their remnants (average triglyceride:cholesterol = 0.17 by mass) had little effect on any of the parameters measured in the perfused liver. Thus, the lipid composition of lipoproteins removed by the liver elicited acute responses by parameters important in the maintenance of hepatic cholesterol homeostasis. These responses reflected the net effects of both the cholesterol and the triglyceride contents of the particles.  相似文献   

12.
Microsomal triglyceride transfer protein (MTP) is an intraluminal protein in the endoplasmic reticulum (ER) that is essential for the assembly of apolipoprotein B (apoB)-containing lipoproteins. In this study, we examine how the livers of mice respond to two distinct methods of blocking MTP function: Cre-mediated disruption of the gene for MTP and chemical inhibition of MTP activity. Blocking MTP significantly reduced plasma levels of triglycerides, cholesterol, and apoB-containing lipoproteins in both wild-type C57BL/6 and LDL receptor-deficient mice. While treating LDL receptor-deficient mice with an MTP inhibitor for 7 days lowered plasma lipids to control levels, liver triglyceride levels were increased by only 4-fold. Plasma levels of apoB-100 and apoB-48 fell by >90% and 65%, respectively, but neither apoB isoform accumulated in hepatic microsomes. Surprisingly, loss of MTP expression was associated with a nearly complete absence of apoB-100 in hepatic microsomes. Levels of microsomal luminal chaperone proteins [e.g., protein disulfide isomerase, glucose-regulated protein 78 (GRP78), and GRP94] and cytosolic heat shock proteins (HSPs) (e.g., HSP60, HSC, HSP70, and HSP90) were unaffected by MTP inhibition. These findings show that the liver responds rapidly to inhibition of MTP by degrading apoB and preventing its accumulation in the ER. The rapid degradation of secretion-incompetent apoB in the ER may block the induction of proteins associated with unfolded protein and heat shock responses.  相似文献   

13.
Two groups of African green monkeys were fed diets containing 40% of calories as fat with half of the fat calories as either fish oil or lard. The fish oil-fed animals had lower cholesterol concentrations in blood plasma (33%) and low density lipoproteins (LDL) (34%) than did animals fed lard. Size and cholesteryl ester (CE) content of LDL, strong predictors of coronary artery atherosclerosis in monkeys, were significantly less for the fish oil-fed animals although the apoB and LDL particle concentrations in plasma were similar for both diet groups. We hypothesized that decreased hepatic CE secretion led to the smaller size and reduced CE content of LDL in the fish oil-fed animals. Hepatic CE secretion was studied using recirculating perfusion of monkey livers that were infused during perfusion with fatty acids (85% 18:1 and 15% n-3) at a rate of 0.1 mumol/min per g liver. The rate of cholesterol secretion was less (P = 0.055) for the livers of fish oil versus lard-fed animals (3.3 +/- 0.5 vs. 6.0 +/- 1.2 mg/h per 100 g, mean +/- SEM) but the rate of apoB secretion was similar for both groups (0.92 +/- 0.15 vs. 1.01 +/- 0.13 mg/h per 100 g, respectively). The hepatic triglyceride secretion rate was also less (P less than 0.05) for the fish oil-fed animals (8.3 +/- 2.5 vs. 18.3 +/- 4.4 mg/h per 100 g). Liver CE content was lower (P less than 0.006) in fish oil-fed animals (4.1 +/- 0.8 vs. 7.4 +/- 0.7 mg/g) and this was reflected in a lower (P less than 0.04) esterified to total cholesterol ratio of perfusate VLDL (0.21 +/- 0.045 vs. 0.41 +/- 0.06). The hepatic VLDL of animals fed fish oil had 40-50% lower ratios of triglyceride to protein and total cholesterol to protein. From these data we conclude that livers from monkeys fed fish oil secreted similar numbers of VLDL particles as those of lard-fed animals although the hepatic VLDL of fish oil-fed animals were smaller in size and relatively enriched in surface material and depleted of core constituents. Positive correlations between plasma LDL size and both hepatic CE content (r = 0.87) and hepatic VLDL cholesterol secretion rate (r = 0.84) were also found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

15.
The microsomal triglyceride transfer protein (MTP) is essential for the synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. We investigated the role the MTP -493G/T gene polymorphism in determining the apoB-100 secretion pattern and LDL heterogeneity in healthy human subjects. Groups of carriers of the T and the G variants (n = 6 each) were recruited from a cohort of healthy 50-yr-old men. Kinetic studies were performed by endogenous [(2)H(3)]leucine labeling of apoB and subsequent quantification of the stable isotope incorporation. apoB production rates, metabolic conversions, and eliminations were calculated by multicompartmental modeling (SAAM-II). LDL subfraction distribution was analyzed in the entire cohort (n = 377). Carriers of the MTP -493T allele had lower plasma LDL apoB and lower concentration of large LDL particles [LDL-I: 136 +/- 57 (TT) vs. 175 +/- 55 (GG) mg/l, P < 0.01]. Kinetic modeling suggested that MTP -493T homozygotes had a 60% lower direct production rate of intermediate-density lipoprotein (IDL) plus LDL compared with homozygotes for the G allele (P < 0.05). No differences were seen in production rates of large and small VLDL, nor were there any differences in metabolic conversion or elimination rates of apoB between the genotype groups. This study shows that a polymorphism in the MTP gene affects the spectrum of endogenous apoB-containing lipoprotein particles produced in humans. Reduced direct production of LDL plus IDL appears to be related to lower plasma concentrations of large LDL particles.  相似文献   

16.
In this study, we explored the paradox that in suckling rats the serum concentration of LDL is high although the liver secretes only minimal quantities of VLDL, the presumed precursor of LDL. Freshly isolated hepatocytes and hepatocytes in primary culture obtained from adult (90 days old) and suckling (17 days old) rats were used to investigate the synthesis and secretion of apolipoprotein B (apoB) and lipids as well as the density profile of secreted apoB-containing lipoproteins. Furthermore, the effects of dexamethasone and oleate on apoB biogenesis were investigated in primary cultures of hepatocytes from adult and suckling rats. Hepatocytes from suckling rats were unable to assemble mature VLDL but secreted apoB as primordial lipoprotein particles in the LDL-HDL density range. Intracellular degradation of apoB was also reduced in hepatocytes from suckling rats compared with that in hepatocytes from adults. The immaturity in VLDL assembly and apoB degradation of hepatocytes from suckling rats could be overcome by treating the cultures with dexamethasone plus oleate or dexamethasone alone. The lower microsomal triacylglycerol transfer protein (MTP) mRNA concentrations in hepatocytes from suckling rats in comparison with hepatocytes from adult rats were not reflected in lower MTP activity levels. Furthermore, dexamethasone plus oleate treatment had no effect on MTP activity although VLDL assembly and secretion were clearly stimulated. We conclude that, during the suckling period of the rat, serum LDL is directly produced by the liver. This is a result of impaired hepatic VLDL assembly, which is a consequence of low triglyceride synthesis and an inefficient mobilization of bulk lipids in the second step of VLDL assembly.  相似文献   

17.
We have studied metabolism of plant sterols and squalene administered intravenously in the form of lipid emulsion mimicking chylomicrons (CM). The CM-like lipid emulsion was prepared by dissolving squalene in commercially available Intralipid. The emulsion was given as an intravenous bolus injection of 30 ml containing 6.3 mg of cholesterol, 1.9 mg of campesterol, 5.7 mg of sitosterol, 1.6 mg of stigmasterol, 18.1 mg of squalene, and 6 g of triglycerides in six healthy volunteers. Blood samples were drawn from the opposite arm before and serially 2.5 -180 min after the injections. The decay of CM squalene, plant sterols, and triglycerides was monoexponential. The half-life of CM squalene was 74 +/- 8 min, that of campesterol was 37 +/- 5 min (P < 0.01 from squalene), and those of sitosterol, stigmasterol, and triglycerides were 17 +/- 2, 15 +/- 1, and 17 +/- 2 min, respectively (P < 0.01 from squalene and campesterol). The CM squalene concentration still exceeded the baseline level 180 min after injection (P = 0.02), whereas plant sterols and triglycerides returned to the baseline level between 45 and 120 min after injection. The half-lives of squalene and campesterol were positively correlated with their fasting CM concentrations. In addition, VLDL squalene, campesterol, and triglyceride concentrations, VLDL, LDL, and HDL sitosterol concentrations, as well as VLDL and LDL stigmasterol concentrations were increased significantly. Cholesterol concentrations increased in VLDL (P < 0.05), but were unchanged in CM after injection. These data suggest that squalene clearance occurs more slowly than that of plant sterols and triglycerides from CM, and that squalene is more tightly associated with triglyceride-rich lipoproteins than are plant sterols in injected CM-like emulsions.  相似文献   

18.
264W94 was designed to inhibit the ileal bile acid transporter (IBAT). Evaluated in vitro, 264W94 dose-dependently inhibited sodium-dependent uptake of 10 micro M [(3)H]taurocholic acid (TC) by rat and monkey brush border membrane vesicles with IC(50)s of 0.24 micro M and 0.41 micro M, and had a competitive profile with K(i) of 0.2 micro M against TC in Chinese hamster ovary cells expressing human IBAT. In distal ileum in situ, 1-10 micro M of 264W94 rapidly decreased uptake of 3mM TC by 24-39%, with corresponding decreases in biliary recovery. In rats and mice in vivo, oral 264W94 decreased absorption of TC analog, 23,25-(75)Se-homocholic acid taurine ((75)SeHCAT; quantitated in feces), with ED(30) of 0.02 mg/kg bid. (75)SeHCAT traced through the GI-tract revealed that peak (97%) inhibition of (75)SeHCAT absorption by the distal quarter of small intestine occurred at 4 h after single dose of 264W94 (0.1 mg/kg). Inhibition of IBAT by 264W94 in rats was associated with compensatory, same-day, 4-fold induction of hepatic cholesterol 7alpha-hydroxylase (CYP7A1) activity, exhibiting normal diurnal fluctuation for 3 days of dosing. In diet induced hypercholesterolemic rats, 264W94 (0.03-1.0 mg/kg bid) dose-dependently reduced serum LDL+VLDL cholesterol up to 61%. In conclusion, 264W94 is a potent new cholesterol lowering agent that acts through inhibition of IBAT and exhibits activity in a human model.  相似文献   

19.
The assembly and secretion of very low density lipoproteins (VLDL) require microsomal triglyceride transfer protein (MTP). Recent evidence also suggests a role for the low density lipoprotein (LDL) receptor in this process. However, the relative importance of MTP in the two steps of VLDL assembly and the specific role of the LDL receptor still remain unclear. To further investigate the role of MTP and the LDL receptor in VLDL assembly, we bred mice harboring "floxed" Mttp alleles (Mttpflox/flox) and a Cre transgene on a low-density lipoprotein receptor-deficient background to generate mice with double deficiency in the liver (Ldlr-/- MttpDelta/Delta). In contrast to the plasma of Ldlr+/+ MttpDelta/Delta mice, the plasma of Ldlr-/- MttpDelta/Delta mice contained apoB100. Accordingly, Ldlr-/- MttpDelta/Delta but not Ldlr+/+ MttpDelta/Delta hepatocytes secreted apoB100-containing lipoprotein particles. The secreted lipoproteins were of LDL and HDL sizes but no VLDL-sized lipoproteins could be detected. These findings indicate that hepatic LDL receptors function as "gatekeepers" targeting dense apoB100-containing lipoproteins for degradation. In addition, these results suggest that very low levels of MTP are insufficient to mediate the second step but sufficient for the first step of VLDL assembly.  相似文献   

20.
During an egg-laying cycle, oviparous animals transfer massive amounts of triglycerides, the major lipid component of very low density lipoprotein (VLDL), from the liver to the developing oocytes. A major stimulus for this process is the rise in estrogen associated with the onset of an egg-laying cycle. In mammals, the microsomal triglyceride transfer protein (MTP) is required for VLDL assembly and secretion. To enable studies to determine if MTP plays a role in basal and estrogen-stimulated VLDL assembly and secretion in an oviparous vertebrate, we have cloned and sequenced the chicken MTP cDNA. This cDNA encodes a protein of 893 amino acids with an N-terminal signal sequence. The primary sequence of chicken MTP is, on average, 65% identical to that of mammalian homologs, and 23% identical to the Drosophila melanogaster protein. We have obtained a clone of chicken embryo fibroblast cells that stably express the avian MTP cDNA and show that these cells display MTP activity as measured by the transfer of a fluorescently labeled neutral lipid. As in mammals, chicken MTP is localized to the endoplasmic reticulum as revealed by indirect immunofluorescence and by the fact that its N-linked oligosaccharide moiety remains sensitive to endoglycosidase H. Endogenous, enzymatically active MTP is also expressed in an estrogen receptor-expressing chicken hepatoma cell line that secretes apolipoprotein B-containing lipoproteins. In this cell line and in vivo, the expression and activity of MTP are not influenced by estrogen. Therefore, up-regulation of MTP in the liver is not required for the increased VLDL assembly during egg production in the chicken. This indicates that MTP is not rate-limiting, even for the massive estrogen-induced secretion of VLDL accompanying an egg-laying cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号