首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Range size, population size and body size, the key macroecological variables, vary temporally both within and across species in response to anthropogenic and natural environmental change. However, resulting temporal trends in the relationships between these variables (i.e. macroecological patterns) have received little attention. 2. Positive relationships between the local abundance and regional occupancy of species (abundance-occupancy relationships) are among the most pervasive of all macroecological patterns. In the absence of formal predictions of how abundance-occupancy relationships may vary temporally, we outline several scenarios of how changes in abundance within species might affect interspecific patterns. 3. We use data on the distribution and abundance of 73 farmland and 55 woodland bird species in Britain over a 32-year period encompassing substantial habitat modification to assess the likelihood of these scenarios. 4. In both farmland and woodland habitats, the interspecific abundance-occupancy relationship changed markedly over the period 1968-99, with a significant decline in the strength of the relationship. 5. Consideration of intraspecific dynamics shows that this has been due to a decoupling of abundance and occupancy particularly in rare and declining species. Insights into the intraspecific processes responsible for the interspecific trend are obtained by analysis of temporal trends in the distribution of individuals between sites, which show patterns consistent with habitat quality declines. 6. This study shows that a profitable approach to ascertaining the nature of human impacts is to link intra- and interspecific processes. In the case of British farmland and woodland birds, changes to the environment lead to species-specific responses in large-scale distributions. These species-specific changes are the driver of the observed changes in the form and strength of the interspecific relationship.  相似文献   

2.
Although acknowledged to be common, intraspecific relationships between local abundance and site occupancy have been examined in detail for few species. Here we report such analyses for six widespread species of breeding birds in Britain, using data from the Common Birds Census. These exhibit a range of temporal trends, including different combinations of increase and decrease in abundance and occupancy. Overall, two species have a statistically significant positive abundance–occupancy relationship on farmland but no relationship in woodland (collared dove, tree sparrow), one a significant positive relationship on farmland and in woodland (magpie), two a significant positive relationship on farmland and a negative one in woodland (redstart, song thrush), and one a significant negative abundance–occupancy relationship on farmland but no relationship in woodland (sparrowhawk). The population dynamics associated with these patterns are used to discern their underlying mechanisms.  相似文献   

3.
A general positive interspecific relationship between local abundance and geographic range size in animals has prompted speculation that a similar relationship might exist intraspecifically, such that a species is widespread at times when it is locally abundant, and more restricted in distribution when it is locally rare. Current evidence suggests that intraspecific relationships often are positive, but that there is considerable variation in the pattern exhibited by species. Here, we use data on British birds to test the hypotheses that species showing a high mean or wide spread of local densities or range sizes will be more likely to show strong intraspecific relationships between abundance and geographic range size. These data show only inconsistent support for an effect of the range of densities or of occupancies on intraspecific abundance-range size relationships. However, the strength of an intraspecific relationship does seem to be related to the mean occupancy of species, and whether or not a species exhibits temporal trends in density, with the strongest relationships found in species with simultaneous trends in both density and occupancy. We suggest that these results are explained by time lags in the loss or gain of species at occupied sites in response to reductions or increases in density.  相似文献   

4.
1.  The abundance and distribution of species tend to be linked, such that species declining in abundance often tend also to show declines in the number of sites they occupy, while species increasing in abundance tend also to be increasing in occupancy. Therefore, intraspecific abundance–occupancy relationships are commonly positive.
2.  The intraspecific pattern is mirrored by more general positive interspecific abundance–occupancy relationships: widespread species tend to be abundant, and narrowly distributed species rare.
3.  Here, we review recent research on these patterns based on the flora and fauna of the British Isles. We assess their generality, describe what is currently known about their structure, and summarize the results of tests of the several hypotheses proposed to explain their existence.
4.  The positive form generally exhibited by abundance–occupancy relationships, intraspecific or interspecific, has consequences for several areas of applied ecology, including conservation, harvesting, biological invasions and biodiversity inventorying. These implications are discussed briefly.  相似文献   

5.
Patterns in the relationships among the range, abundance, and distribution of species within a biome are of fundamental interest in ecology. A self-similarity condition, imposed at the community level and previously demonstrated to lead to the power-law form of the species-area relationship, is extended to the species level and shown to predict testable power-law relationships between range size and both species abundance and area of census cell across scales of spatial resolution. The predicted slopes of plots of log(range size) versus log(abundance) are shown to be in good agreement with data from British breeding bird and mammal censuses and with data on the distribution of fern species in old-growth forest. The predicted slopes of plots of log(range size) versus log (area of census cell) are consistent with the limited available data for British plant species. Self-similarity provides a testable theoretical framework for a unified understanding of patterns among the range, abundance, and distribution of species.  相似文献   

6.
Data from the British Trust for Ornithology Common Birds Census and two atlases of breeding birds were used to examine the form of the interspecific abundance–range size relationship for the British avifauna. The relationship is positive for both farmland and woodland habitats and over two different periods, with some evidence of curvilinearity, using either proportion of occupied sites or numbers of occupied 10 × 10 km squares as measures of range size, and mean density at occupied sites as a measure of abundance. A log-linear plot gives the highest correlation. The relationship is stronger if based on maximum local densities than if based on average densities, but there is no relationship using minimum local densities. Relationships based on abundances at individual sites are uniformly positive for all sites, although the relationships for many sites also show evidence of curvilinearity, especially when range size is measured as the proportion of occupied sites. Species show significant concordance in their rank abundances across sites. We discuss some implications of these results.  相似文献   

7.
The positive interspecific abundance–occupancy relationship is one of the most general patterns in ecology. Positive intra specific relationships should also exist within species over time, and so a species should occupy more sites in years when it is more abundant. However, positive intraspecific relationships are not as ubiquitous as their interspecific counterparts. It has been hypothesized that low levels of temporal variation and time-lags between changes of abundance and occupancy within species make positive intraspecific relationships difficult to detect. We analyse 31 years of U.K.-wide data on the decline of an arctiid moth, Arctia caja , which provides the first empirical demonstration of an abundance–occupancy time-lag for any species. Such time-lags are probably common and we discuss their impact on the intraspecific abundance–occupancy relationship and their implications for conservation management. In A. caja , the time-lag indicates that the decline of the species is probably not driven by habitat loss.  相似文献   

8.
Distribution of abundance across the range in eastern North American trees   总被引:2,自引:0,他引:2  
Aim  We analysed spatial datasets of abundance across the entirety, or near entirety, of the geographical ranges of 134 tree species to test macroecological hypotheses concerning the distribution of abundance across geographical ranges.
Location  Our abundance estimates came via the USDA Forest Service Forest Inventory and Analysis Eastwide Database, which contains data for 134 eastern North American tree species.
Methods  We extracted measures of range size and the spatial location of abundance relative to position in the range for each species to test four hypotheses: (a) species occur in low abundance throughout most of their geographical range; (b) there is a positive interspecific relationship between abundance and range size; (c) species are more abundant in the centre of their range; and (d) there is a bimodal distribution of spatial autocorrelation in abundance across a species range.
Results  Our results demonstrate that (a) most species (85%) are abundant somewhere in their geographical range; (b) species achieving relatively high abundance tend to have larger range sizes; (c) the widely held assumption that species exhibit an 'abundant-centre distribution' is not well supported for the majority of species; we suggest 'abundant-core' as a more suitable term; and (d) there is no evidence of a bimodal distribution of spatial autocorrelation in abundance.  
Main Conclusions 

For many tree species, high abundance can be achieved at any position in the range, though suitable sites are found with less frequency towards range edges. Competitive relationships may be involved in the distribution of abundance across tree ranges and species with larger ranges (and possibly broader niches) may be affected more by biotic interactions than smaller ranging species.  相似文献   

9.
Aim To investigate the relationship between geographical range size and abundance (population density) in Australian passerines. Location Australia (including Tasmania). Methods We analysed the relationship between range size and local abundance for 272 species of Australian passerines, across the whole order and within families. We measured abundance as mean and maximum abundance, and used a phylogenetic generalized least‐squares regression method within a maximum‐likelihood framework to control for effects of phylogeny. We also analysed the relationship within seven different habitat types. Results There was no correlation between range size and abundance for the whole set of species across all habitats. Analyses within families revealed some strong correlations but showed no consistent pattern. Likewise we found little evidence for any relationship or conflicting patterns in different habitats, except that woodland/forest habitat species exhibit a negative correlation between mean abundance and range size, whilst species in urban habitats exhibit a significant positive relationship between maximum abundance and range size. Despite the general lack of correlation, the raw data plots of range size and abundance in this study occupied a triangular space, with narrowly distributed species exhibiting a greater variation in abundances than widely distributed species. However, using a null model analysis, we demonstrate that this was due to a statistical artefact generated by the frequency distributions for the individual variables. Conclusions We find no evidence for a positive range size‐abundance relationship among Australian passerines. This absence of a relationship cannot be explained by any conflicting effects introduced by comparing across different habitats, nor is it explained by the fact that large proportions of Australia are arid. We speculate that the considerable isolation and evolutionary age of Australian passerines may be an explanatory factor.  相似文献   

10.
A number of mechanisms have been proposed to explain the widely observed positive interspecific relationship between local abundance and extent of geographic distribution in animals Here, we use data on British birds to assess two of these hypotheses that the relationship results from the relative position of a study area with respect to the geographic ranges of the species which occur there, and that the relationship results from a simple difference between taxonomic groups, rather than any general tendency for more abundant species to have larger range sizes We find support for neither hypothesis Phylogenetically controlled comparative analyses reveal that the positive abundance-range size relationship is consistently found within taxa, even when abundance and range size are calculated at a variety of spatial and temporal scales Analyses both across species and within taxa show that bird species for which Britain is near to the centre of their distribution in Europe tend to have larger British range sizes and higher abundances than do species where Britain is close to the edge of their range in Europe However, these relationships do not cause that between abundance and range size, because this latter relationship persists within different range position categories Whether a species is near the centre or edge of its geographic range in Britain may affect its position on the abundance-range size relationship, but does not produce the relationship Range position in Britain does, however, seem to be related to the magnitude of temporal changes in the range sizes of British birds There is some evidence to suggest that species for which Britain is nearer to their European range centre have shown smaller changes in distribution over the period 1970–1990 than have species for which Britain is close to their European range edge  相似文献   

11.
Aim To test the prediction that deviations of species from the positive interspecific relationship between abundance and occupancy (a measure of geographical range size) are related to differences in dispersal. Location Great Britain. Methods Quantitative data on the abundances, occupancy and dispersal distances of British birds are compared using phylogenetic comparative methods. Results Measures of natal and adult dispersal distance, and the intraspecific variance in these parameters, explain little variation in occupancy in addition to that accounted for by population size. Individual dispersal variables failed to explain significant variance when added individually to a model with population size as a predictor. Migrants and species using wet habitats tend to disperse further than residents and dry habitat species. Analysing these four groups separately revealed effects of dispersal only on the occupancy attained by dry habitat species. Conclusions The only consistent predictor of occupancy in these analyses was population size.  相似文献   

12.
Abstract 1. Knowing how species are distributed across a landscape can considerably aid the management of populations and species richness. Insect parasitoids constitute a large fraction of terrestrial biodiversity and help regulate other insect populations, but their ecology is poorly known at a landscape scale. 2. Using Malaise traps distributed first extensively and then intensively across woodland patches in an agricultural landscape, we tested whether four ichneumonid subfamilies display (i) a positive relationship between abundance and occupancy, (ii) a positive relationship between abundance in the extensive sample and abundance in the intensive sample, and (iii) aggregation across traps. 3. A positive relationship between abundance and occupancy was found across species in both samples, and was relatively strong. Abundance in the extensive samples was positively correlated with abundance in the intensive samples. On average, species were aggregated in both samples, although aggregation was not necessary for a positive abundance–occupancy relationship. 4. These results suggest that ichneumonid species can largely be classified on a continuum from widespread and locally abundant to localised and locally scarce. The former species allow the potential for pervasive natural control of host populations. The latter species, which constitute a substantial majority of the species list, will be vulnerable to extinction through both stochastic forces and widespread adverse forces such as climate change and habitat modification. However, the assessment of species’ status is likely to be facilitated by the positive abundance–occupancy relationship. 5. Species inventories for ichneumonids will be taxing because of the need to sample both intensively and extensively to detect rare species, which constitute the majority of species. However, it is possible to generalise species abundances across spatial scales and years, facilitating monitoring.  相似文献   

13.
Aim Questions related to abundances of organisms are central to ecological research. A priori, a scale independent estimation of abundances would be expected. However, we find estimates of numbers of bird individuals from all over the world to increase less than proportionately with increasing plot size. At the whole assemblage level, the pattern holds across biogeographical regions and habitats. The slope of the interspecific and, for the majority of species, the intraspecific individuals–area relationship is also significantly shallower than 1. The question arises as to which mechanisms cause these patterns. Location Global. Methods At the assemblage, interspecific and intraspecific levels, we tested three mechanisms that could be responsible for these patterns by comparing the slope of the individuals–plot area relationship for subsets of a database compiled from the literature. Spatial autocorrelation was controlled for. Results There was no evidence for an influence of plot area choice in order to sample a constant number of individuals. Evidence for higher survey efficiency was available only with increasing number of visits at the intraspecific level. Evidence for influences of habitat heterogeneity was present at the assemblage, interspecific and intraspecific levels. This mechanism can work only if small plots are delimited non‐randomly in homogeneous habitat. Main conclusions Avian population size estimates without indication of the area over which they were obtained are of substantially less value than those coupled with that information. Ecologists planning to compare avian abundances between plots varying in some other factor of interest should minimize variations in their areas and/or account for them in data analyses. Population viability analyses, regional and global population size estimates, site prioritization and the scaling of ecosystem and species energy utilization need to address the plot area effect on assemblage and individual species abundances.  相似文献   

14.
The positive relationship between range size and abundance is one of the best‐documented patterns in macroecology, but a growing number of studies from isolated tropical areas have reported negative or neutral relationships. It has been hypothesized that the combination of geographic isolation and environmental stability create selection pressures that favor narrowly specialized species, which could drive these non‐positive relationships. To test this idea, we measured the range size–abundance relationships of eleven bird communities in mature and degraded forest on four islands in the Indo‐Pacific, namely Flores in the Lesser Sundas, Seram in the Moluccas, and the New Caledonian islands of Grande Terre and Lifou. Local abundance data was gathered through extensive and methodologically consistent surveying, and regressed against global range size using linear mixed effect models. The relationship between range size and abundance was significantly negative across all combined mature and degraded forest communities. As negative relationships were found in degraded forest with little environmental stability, we conclude that the abundance of small‐ranged species on the study islands cannot be ascribed to narrow specialization. Rather, cross‐habitat community comparisons indicate that locally abundant endemic and near‐endemic species adapted to a broad spectrum of local environmental conditions cause the observed negative relationships. We suspect that geographic isolation facilitates the evolution of species that are simultaneously broad‐niched, small‐ranged, and abundant, as water barriers limit the range expansions that would typically accompany species’ attainment of high local population densities. The consistently negative relationships found across Indo‐Pacific islands represent a striking deviation from the positive range size–abundance relationship ‘rule’, and future studies should seek to determine whether the patterns detected here extend to geographically isolated mainland environments.  相似文献   

15.
The current avifauna of New Zealand comprises species with two distinct origins: those that evolved in New Zealand or colonized naturally from neighbouring landmasses, and those that were deliberately introduced to the islands by European settlers. Elsewhere, it has been shown that for species introduced to New Zealand from Britain there is a positive interspecific correlation between the geographical range sizes attained in both countries. Since positive relationships between abundance, measured either as population size or density, and geographical range size are a near ubiquitous feature of assemblages of closely related animal species, this suggests that species’ abundances may also be so correlated between the two countries. Here, data for 12 passerine bird species introduced to New Zealand from Britain are used to compare population densities and density–range size relationships in their native and alien ranges. In addition, the density–range size relationship for 12 passerine bird species that can be considered native to New Zealand is compared to that for the introduced species. The geographical range size and the mean and maximum densities of introduced species in New Zealand were significantly positively correlated with those values for the same species in Britain. However, in no case was the relationship between mean density and range size significant. While not statistically significant, density–range size relationships for introduced species are similar in New Zealand and Britain, but those for introduced and native species in New Zealand are quite different. Implications of these patterns are discussed.  相似文献   

16.
Reeve et al. (2016, Ecography, 39 , 990–997) recently reported negative range–abundance relationships in Indo‐Pacific bird communities and speculated that geographical isolation facilitates the evolution of broad‐niched, small‐ranged and abundant species. We tested this relationship using a large independent data set on range and abundance of birds across New Caledonia (over 4,000 bird census points for 17,300 km²). In contradiction to Reeve et al. (2016, Ecography, 39 , 990–997), we found clear evidence that range–abundance relationships are positive and endemic species have narrower habitat niches than wide‐range species. Our findings are likely valid also for other islands in the Indo‐Pacific.  相似文献   

17.
Several studies have uncovered interspecific latitudinal gradients in abundance (population density) such that tropical species tend to be, on average, less abundant than species at higher latitudes. The causes of this relationship remain poorly studied, in contrast to the relative wealth of literature examining the relationship to latitude of other variables such as range size and body mass. We used a cross-species phylogenetic comparative approach and a spatial approach to examine three potential determining factors (distribution, reproductive output and climate) that might explain why abundance correlates with latitude, using data from 54 species of honeyeaters (Meliphagidae) in woodland environments in eastern Australia. There is a strong positive correlation between mean abundance and latitude in these birds. Reproductive output (clutch size) was positively linked to both abundance and latitude, but partial correlation analysis revealed that clutch size is not related to abundance once the effects of latitude are removed. A subsequent multiple regression model that also considered range size, clutch size and body mass showed that latitude is the only strong predictor of abundance in honeyeaters. In the separate spatial analysis, the climatic variables that we considered (temperature, rainfall and seasonality) were all strongly linked to latitude, but none served as a better predictor of abundance than latitude per se, either individually or collectively. The most intriguing result of our analyses was that the cross-species latitudinal pattern in abundance was not evident within species. This suggests an intrinsic cause of the pattern of ‘rarity in the tropics’ in Australian honeyeaters. We suggest that evolutionary age may provide a key to understanding patterns of abundance in these birds.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
Alex Fajardo  Andrew Siefert 《Oikos》2019,128(6):881-891
It is assumed that widespread, generalist species have high phenotypic variation, but we know little about how intraspecific trait variation (ITV) relates to species abundance and niche breadth. In the temperate rainforest of southern Chile, we hypothesized that species with wide niche breadth would exhibit 1) high among‐plot ITV, 2) a strong relationship between trait values and the environment, and 3) a close fit between traits and local environment trait optima. We measured leaf functional traits (leaf area, LMA, leaf N and P concentrations) of saplings in woody species, and compared the relative abundance of each species with its niche breadth, measured as the range of light, soil N and P availability. We used the slope of the linear regression of species’ trait–environment relationships to assess the strength and direction of these relationships, and measured the degree to which species’ trait values track the environmental optimum across plots. In some cases, species having wide niche breadth had high ITV in leaf N and also matched traits (LMA and leaf P) to local optima along the light gradient; they also had high ITV in general and matched leaf P to local optima along the soil P gradient. The relationship between species with wide niche breadth and the strength of intraspecific trait–environment relationships was generally weak and varied depending on the niche dimension and trait in question. Species varied considerably in the strength of trait–environment relationships and total magnitude of ITV, and this variation was not generally strongly related to species abundances or niche breadth patterns. In conclusion, trait variation at the community level is not driven by a few abundant, widely distributed species, but depends on the aggregate trait responses of both abundant and rare species. This makes it difficult to scale individual species trait responses up to the community level.  相似文献   

19.
The effect of isolation and the importance of dispersal in establishing and maintaining populations in fragments of remnant habitat remain poorly understood. Nevertheless, environmental connectivity is likely to be important for ensuring the long‐term preservation of biodiversity in extensively cleared landscapes. In this study, we compared reptile communities in large conservation parks with those in small woodland remnants 6.5–12 km from the parks, on the Eyre Peninsula, South Australia, Australia. We assessed the impact of fragmentation on the abundance, richness and habitat preferences of reptiles, and examined whether connection to linear roadside vegetation altered reptile communities in small woodland remnants. Of the 31 reptile species, 12 were restricted to conservation parks and six to habitat fragments in farmland. There was a substantial reduction in reptile species richness and abundance in farmland fragments. Direct connection of remnant vegetation to roadside corridors did not affect abundance of common species in the farmland fragments, although species richness was lower in isolated remnants in one of our two study regions. The habitat preference of the scincid lizard Menetia greyii differed between farmland fragments, where they were regularly found on dunes and roadsides, and conservation parks, where they were rare and not detected on dunes. We suggest that habitat fragmentation may have altered interspecific interactions, enabling an expansion of habitat use in the farming landscape. Significantly lower abundance of four common species in farmland settings compared with reserves indicated that existing corridors and small fragments provide inadequate connectivity over larger distances. To counter this effect, large reserves may need to be less than 10 km apart.  相似文献   

20.
Recent studies have suggested that seed size and plant abundance in communities are associated. However, inconsistent patterns have emerged from these studies, with varying mechanisms proposed to explain emergent relationships. We employ a theoretical framework, based on key theory lineages of vegetation dynamics and species coexistence, to examine relationships between species abundance and seed size. From these theory lineages, we identified four models and their predictions: the Seed size/number trade‐off model (SSNTM), the Succession model (SM), the Spatial competition model (SCM), and the Lottery model (LM). We then explored empirical evidence from ten diverse plant communities for seed size and abundance patterns, and related these patterns to model predictions. The SSNTM predicts a negative correlation between seed size and abundance. The SM predicts either a negative, positive or no correlation dependent on time since disturbance, while the SCM and LM make no predictions for a relationship between seed size and abundance. We found no evidence for consistent relationships between seed size and abundance across the ten communities. There were no consistent differences in seed size and abundance relationships between communities dominated by annuals compared to perennials. In three of the ten communities a significant positive seed size and abundance correlation emerged, which falsified the SSNTM as an important determinant of abundance structure in these communities. For sites in coastal woodland, the relationships between seed size and abundance were consistent with the predictions of the SM (although generally not significant), with fire being the disturbance. We suggest that the significant positive seed size and abundance correlations found may be driven by the association between large seeds and large growth forms, as large growth forms tend to be dominant. It seems likely that patterns of seed size and abundance in communities are determined by a complex interaction between environmental factors and correlations of plant attributes that determine a species’ strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号