首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Photosynthetic electron transport from water to lipophilic Photosystem II acceptors was stimulated 3--5-fold by high concentrations (greater than or equal to 1 M) of salts containing anions such as citrate, succinate and phosphate that are high in the Hofmeister series. 2. In trypsin-treated chloroplasts, K3Fe(CN)6 reduction insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea was strongly stimulated by high concentrations of potassium citrate, but there was much less stimulation of 2,6-dichloroindophenol reduction in Tris-treated chloroplasts supplied with 1,5-diphenylcarbazide as artificial donor. The results suggest that the main site of action of citrate was the O2-evolving complex of Photosystem II. 3. Photosystem I partial reactions were also stimulated by intermediate concentrations of citrate (up to 2-fold stimulation by 0.6--0.8 M-citrate), but were inhibited at the highest concentrations. The observed stimulation may have been caused by stabilizaton of plastocyanin that was complexed with the Photosystem I reaction centre, 4. At 1 M, potassium citrate protected O2 evolution against denaturation by heat or by the chaotropic agent NaNO3. 5. It is suggested that anions high in the Hofmeister series stimulated and stabilized electron transport by enhancing water structure around the protein complexes in the thylakoid membrane.  相似文献   

2.
Detergent preparations isolated from thylakoids of the red alga Porphyridium cruentum, in a sucrose, phosphate, citrate, magnesium chloride medium consist of phycobilisomes and possess high rates of photosystem II activity. Characterization of these particles shows that the O2-evolving activity is stable for several hours and the pH optimum is about 6.5 to 7.2. Response of the system to light, electron donors and acceptors, and inhibitors verify that the observed activity, measured both as O2 evolution and 2,6-dichlorophenol-indophenol reduction, is due to photosystem II. Furthermore, photosystem II is functionally coupled to the phycobilisome in this preparation since green light, absorbed by phycobilisomes of P. cruentum, is effective in promoting both O2 evolution and 2,6-dichlorophenol-indophenol reduction. Photosystem II activity declines when light with wavelengths shorter than 665 nm is removed. Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine inhibit photosystem II activity in this preparation, indicating that the herbicide binding site is a component of the photosystem II-phycobilisome particle.  相似文献   

3.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   

4.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

5.
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.  相似文献   

6.
Photosystem II oxygen-evolving preparations with attached phycobilisomes were isolated from the thermophilic cyanobacterium Synechococcus sp. with beta-octylglucoside or digitonin. Fluorescence emission spectra of the two preparations determined at 77 K largely lacked a far red band which originates from photosystem I. The spectrum of the digitonin preparation was otherwise similar to that of intact cells, whereas the beta-octylglucoside preparation showed a pronounced band at 687 nm, which is considered to be emitted from phycobilisomes. The relative yield of phycobilin fluorescence was similar between the digitonin preparations and the cells but was considerably larger in the beta-octylglucoside preparations at room temperature. The quantum yield of ferricyanide photoreduction determined with light which is absorbed mainly by phycobiliproteins was 0.85 for the digitonin preparation and 0.57 for the beta-octylglucoside preparation. The results indicate that excitation energy is transferred from phycobilisomes to photosystem II reaction centers in the digitonin preparation as efficiently as in intact cells, while a significant portion of light energy harvested by phycobilisomes is not utilized by the primary photochemistry in the beta-octylglucoside preparation. Digitonin and beta-octylglucoside preparations had 65 and 48 chlorophyll a molecules per photosystem II reaction center, respectively. The beta-octylglucoside preparation contained twice as much phycocyanin and allophycocyanin per photosystem II reaction center as the digitonin preparation, which has a phycobiliprotein-to-photosystem II reaction center ratio very similar to that of cells. It is concluded that whereas the beta-octylglucoside preparation contains a considerable amount of free phycobilisomes, all phycobilisomes present in the digitonin preparation are physically and functionally linked to photosystem II reaction center complexes.  相似文献   

7.
Phycobilisomes are the major accessory light-harvesting complexes of cyanobacteria and red algae. Studies using fluorescence recovery after photobleaching on cyanobacteria in vivo have shown that the phycobilisomes are mobile complexes that rapidly diffuse on the thylakoid membrane surface. By contrast, the PSII core complexes are completely immobile. This indicates that the association of phycobilisomes with reaction centers must be transient and unstable. Here, we show that when cells of the cyanobacterium Synechococcus sp. PCC7942 are immersed in buffers of high osmotic strength, the diffusion coefficient for the phycobilisomes is greatly decreased. This suggests that the interaction between phycobilisomes and reaction centers becomes much less transient under these conditions. We discuss the possible reasons for this. State transitions are a rapid physiological adaptation mechanism that regulates the way in which absorbed light energy is distributed between PSI and PSII. Immersing cells in high osmotic strength buffers inhibits state transitions by locking cells into whichever state they were in prior to addition of the buffer. The effect on state transitions is induced at the same buffer concentrations as the effect on phycobilisome diffusion. This implies that phycobilisome diffusion is required for state transitions. The main physiological role for phycobilisome mobility may be to allow such flexibility in light harvesting.  相似文献   

8.
Chromatic adaptation and the events involved in phycobilisome biosynthesis   总被引:1,自引:0,他引:1  
Abstract. The major light-harvesting complex in cyanobacteria and red algae is the phycobilisome, a macromolecular complex that is attached to the surface of the photosynthetic membranes. The phycobilisome is composed of a number of different chromophoric polypeptides called phycobiliproteins and nonchromophoric polypeptides called linker proteins. Several environmental parameters modulate the synthesis, assembly and degradation of phycobilisome components. In many cyanobacteria, the composition of the phycobilisome can change to accommodate the prevalent wavelengths of light in the environment. This phenomenon is called complementary chromatic adaptation. Organisms that exhibit complementary chromatic adaptation must perceive the wavelengths of light in the environment and transduce the light signals into a sequence of biochemical events that result in altering the activities of genes encoding specific phycobiliprotein and linker polypeptides. Other environmental parameters such as light intensity and nutrient status can also have marked effects on both the number and composition of the phycobilisomes. The major concern of this article is the molecular events involved in chromatic adaptation. Most of the information concerning this process has been gained from studies involving the filamentous cyanobacterium Fremyella diplosiphon . However, also briefly considered are some of the complexities involved in phycobilisome biosynthesis and degradation; they include post-translational modification of phycobilisome polypeptides, the coordinate expression of chromophore and apobiliprotein, the specific degradation of phycobilisomes when cyanobacteria are deprived of macronutrients such as nitrogen, sulphur and phosphorus, and the assembly of the individual phycobilisome components into substructures of the light harvesting complex.  相似文献   

9.
Ca2+ has been shown to be essential for the retention of maximal O2-evolving activity in Photosystem 2 particles extracted by using dodecyldimethylamine oxide from Anacystis nidulans thylakoids. The effect cannot entirely be mimicked by using Mg2+. Ca2+ stimulates electron transport from diphenylcarbazide to 2,6-dichloroindophenol catalysed by lead-inhibited cation-free preparations, showing the presence of two cation-binding sites in these particles. Photosystem 2 preparations extracted in Ca2+-containing buffer show the presence of three polypeptides at mol. wt. 30000, 33000 and 36000, which are absent or much decreased in preparations extracted in Mg2+-containing buffer. The calmodulin antagonist chlorpromazine inhibits activity of the Photosystem 2 preparation, suggesting the presence of a Ca2+-binding protein.  相似文献   

10.
Erhard Mörschel 《Planta》1982,154(3):251-258
Phycobilisomes of red algae and cyanobacteria contain small amounts of nonpigmented polypeptides in addition to the major constituent biliprotein pigments. The localization of these polypeptides is analyzed by gel electrophoresis of phycobilisome fragments obtained by selective dissociation and subsequent separation. Five groups of biliprotein aggregates are determined, belonging to the 6, 11, 16, 18 and 23 S categories. Accessory nonpigmented high molecular weight proteins (80,000 MW) are exclusively bound to phycobilisome core fractions and thylakoids, thus apparently serving as links between the phycobilisomes and the photosynthetic units of the thylakoids. In contrast, smaller nonpigmented accessory polypeptides of 20,000 to 60,000 MW are preferably found in the peripheral biliprotein stacks. They may either form a compatible link between the phycobilisome core and periphery or bind and co-polymerize with hexameric biliproteins in the peripheral stacks to enhance or effect binding of the aggregates. Furthermore, they may determine the arrangement and composition of the phycobilisomes during development and chromatic adaptation.Abbreviations PE phycoerythrin - PEC phycoerythrocyanin - PC phycocyanin - APC allophycocyanin  相似文献   

11.
Phycobilisome structure and function   总被引:3,自引:0,他引:3  
Phycobilisomes are aggregates of light-harvesting proteins attached to the stroma side of the thylakoid membranes of the cyanobacteria (blue-green algae) and red algae. The water-soluble phycobiliproteins, of which there are three major groups, tetrapyrrole chromophores covalently bound to apoprotein. Several additional protiens are found within the phycobilisome and serve to link the phycobiliproteins to each other in an ordered fashion and also to attach the phycobilisome to the thylakoid membrane. Excitation energy absorbed by phycoerythrin is transferred through phycocyanin to allophycocyanin with an efficiency approximating 100%. This pathway of excitation energy transfer, directly confirmed by time-resolved spectroscopic measurements, has been incorporated into models describing the ultrastructure of the phycobilisome. The model for the most typical type of phycobilisome describes an allophycocyanin-containing core composed of three cylinders arranged so that their longitudinal axes are parallel and their ends form a triangle. Attached to this core are six rod structures which contain phycocyanin proximal to the core and phycoerythrin distal to the core. The axes of these rods are perpendicular to the longitudinal axis of the core. This arrangement ensures a very efficient transfer of energy. The association of phycoerythrin and phycocyanin within the rods and the attachment of the rods to the core and the core to the thylakoid require the presence of several linker polypeptides. It is recently possible to assemble functionally and structurally intact phycobilisomes in vitro from separated components as well as to reassociate phycobilisomes with stripped thylakoids. Understanding of the biosynthesis and in vivo assembly of phycobilisomes will be greatly aided by the current advances in molecular genetics, as exemplified by recent identification of several genes encoding phycobilisome components.Combined ultrastructural, biochemical and biophysical approaches to the study of cyanobacterial and red algal cells and isolated phycobilisome-thylakoid fractions are leading to a clearer understanding of the phycobilisome-thylakoid structural interactions, energy transfer to the reaction centers and regulation of excitation energy distribution. However, compared to our current knowledge concerning the structural and functional organization of the isolated phycobilisome, this research area is relatively unexplored.  相似文献   

12.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

13.
Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis.   总被引:5,自引:0,他引:5  
Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3 : 0.5 : 0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 mumol O2/h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196 degrees C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O2/einstein (605 nm), with a lesser change in the Vmax values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.  相似文献   

14.
Exposure of blue-green or red algal cells to temperatures exceeding 60–65°C for several minutes resulted in bleaching of all phycobilin absorption in the visible range, with virtually no alteration in chlorophyll or carotenoid absorption. Difference spectra of non-bleached vs bleached cells appeared identical to absorption spectra of purified phycobilisomes isolated from the same cell culture in high phosphate medium. All phycobilin chromophores were bleached at approximately the same rate during heating. There were no changes in apparent molecular weights or relative amounts of the phycobilisome apoproteins during chromophore bleaching. Phycobilisomes in cell extracts from Anacystis nidulans resisted bleaching when suspended in medium of high phosphate concentration, but were bleached at 60–65°C within a few minutes when placed in diluted medium. The results indicate that phycobilisomes in vivo are stabilized by a mechanism other than high osmotic and ionic strength. This represents a rapid and quantitative method to characterize the phycobiliprotein content of cyanobacteria and red algae in vivo.Abbreviations Chl chlorophyll - APC allophycocyanin - PC phycocyanin - PE phycoerythrin - SPM medium, 0.2 M sucrose, 15 mM MgCl2, 0.75 M Na/KPO4, pH 7.8  相似文献   

15.
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.  相似文献   

16.
Four procedures utilizing different detergent and salt conditions were used to isolate oxygen-evolving Photosystem II (PS II) preparations from spinach thylakoid membranes. These PS II preparations have been characterized by freeze-fracture electron microscopy, SDS-polyacrylamide gel electrophoresis, steady-state and pulsed oxygen evolution, 77 K fluorescence, and room-temperature electron paramagnetic resonance. All of the O2-evolving PS II samples were found to be highly purified grana membrane fractions composed of paired, appressed membrane fragments. The lumenal surfaces of the membranes and thus the O2-evolving enzyme complex, are directly exposed to the external environment. Biochemical and biophysical analyses indicated that all four preparations are enriched in the chlorophyll ab-light-harvesting complex and Photosystem II, and depleted to varying degrees in the stroma-associated components, Photosystem I and the CF1-ATPase. The four PS II samples also varied in their cytochrome f content. All preparations showed enhanced stability of oxygen production and oxygen-rate electrode activity compared to control thylakoids, apparently promoted by low concentrations of residual detergent in the PS II preparations. A model is presented which summarizes the effects of the salt and detergent treatments on thylakoid structure and, consequently, on the configuration and composition of the oxygen-evolving PS II samples.  相似文献   

17.
Immunogold labelling on ultrathin sections of the red alga Porphyridiumcruentum (ATCC 50161) was used to assess changes in the densityand distribution of polypeptide components of photosystem I,photosystem II, phycobilisomes, and ATP synthase within thethylakoid membrane as a function of growth irradiance. In cellsgrown under a low, limiting quantum flux (6 microeinsteins persquare meter per second of continuous white light) thylakoidmembrane density and total thylakoid area per cell are 2 1/2times greater than in cells grown under a high, saturating quantumflux (280 microeinsteins per square meter per second). Immunogoldlabelling data indicate that concentrations of photosystem I,photosystem II and phycobilisomes in thylakoids of low light-growncells are only slightly greater than in cells grown under highlight. In contrast, the concentration of ATP synthase withinthe thylakoid membrane is nearly ten times greater in high light-growncells. Photosystem I polypeptides were detected in those portionsof the thylakoid membrane which traverse the pyrenoid, but photosystemII and phycobilisomes appeared to be absent from these membranes.Ribulose-l,5-bisphosphate carboxylase was restricted primarilyto the pyrenoid, and its concentration in the stroma or pyrenoidwas little affected by the photon flux density. Quantitativeestimates of photosystems I and II, phycobilisomes, and ATPsynthase by spectroscopy or by immunoelectrophoresis are inaccord with the immunogold results and lend support to the useof immunogold labelling for quantifying changes in relativeamounts of membrane proteins. (Received October 29, 1990; Accepted February 4, 1991)  相似文献   

18.
In the present work, electron microscopy and single particle averaging was performed to investigate the supramolecular architecture of hemiellipsoidal phycobilisomes from the unicellular red alga Porphyridium cruentum. The dimensions were measured as 60 × 41 × 34 nm (length × width × height) for randomly ordered phycobilisomes, seen under high-light conditions. The hemiellipsoidal phycobilisomes were found to have a relatively flexible conformation. In closely packed semi-crystalline arrays, observed under low-light conditions, the width is reduced to 31 or 35 nm, about twice the width of the phycobilisome of the cyanobacterium Synechocystis sp. PCC 6803. Since the latter size matches the width of dimeric PSII, we suggest that one PBS lines up with one PSII dimer in cyanobacteria. In red algae, a similar 1:1 ratio under low-light conditions may indicate that the red algal phycobilisome is enlarged by a membrane-bound peripheral antenna which is absent in cyanobacteria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ana A. Arteni and Lu-Ning Liu equally contributed to the work.  相似文献   

19.
Efficient production of ATP and NADPH by the light reactions of oxygen-evolving photosynthesis demands continuous adjustment of transfer of absorbed light energy from antenna complexes to Photosystem I (PS I) and II (PS II) reaction center complexes in response to changes in light quality. Treatment of intact cyanobacterial cells with N-ethylmaleimide appears to disrupt energy transfer from phycobilisomes to Photosystem I (PS I). Energy transfer from phycobilisomes to Photosystem II (PS II) is unperturbed. Spectroscopic analysis indicates that the individual complexes (phycobilisomes, PS II, PS I) remain functionally intact under these conditions. The results are consistent with the presence of connections between phycobiliproteins and both PS II and PS I, but they do not support the existence of direct contacts between the two photosystems.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - NEM N-ethylmaleimide - PBS phycobilisome - PS photosystem  相似文献   

20.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号