首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-beta) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-beta in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-beta region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-beta deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-beta region is sufficient to direct initiation and that specific DNA sequences in the ori-beta region are required for efficient initiation activity.  相似文献   

3.
The origin of DNA replication in the human β-globin gene contains an initiation region (IR) and two flanking auxiliary elements. Two replicator modules are located within the upstream auxiliary sequence and the IR core, but the functional sequences in the downstream auxiliary element are unknown. Here, we use a combination of benzoylated-naphthoylated DEAE (BND) cellulose purification and nascent strand abundance assays to show that replication initiation occurs at the β-globin 3′ enhancer on human chromosome 11 in the Hu11 hybrid murine erythroleukemia (MEL) cell line. To examine replicator function, 3′ enhancer fragments were inserted into an ectopic site in MEL cells via an optimized FRT/EGFP-FLP integration system. These experiments demonstrate that the 1.6 kb downstream auxiliary element is a third replicator module called bGRep-E in erythroid cells. The minimal 260 bp 3′ enhancer is required but not sufficient to initiate efficient replication, suggesting cooperation with adjacent sequences. The minimal 3′ enhancer also cooperates with elements in an expressing HS3β/γ-globin construct to initiate replication. These data indicate that the β-globin replicator has multiple initiation sites in three closely spaced replicator modules. We conclude that a mammalian enhancer can cooperate with adjacent sequences to create an efficient replicator module.  相似文献   

4.
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.  相似文献   

5.
6.
Previous studies have shown that mammalian cells contain replicator sequences, which can determine where DNA replication initiates. However, the specific sequences that confer replicator activity were not identified. Here we report a detailed analysis of replicator sequences that dictate initiation of DNA replication from the human beta-globin locus. This analysis suggests that the beta-globin replication initiation region contains two adjacent, redundant replicators. Each replicator was capable of initiating DNA replication independently at ectopic sites. Within each of these two replicators, we identified short, discrete, nonredundant sequences, which cooperatively determine replicator activity. Experiments with somatic cell hybrids further demonstrated that the requirements for initiation at ectopic sites were similar to the requirements for initiation within native human chromosomes. The replicator clustering and redundancy exemplified in the human beta-globin locus may account for the extreme difficulty in identifying replicator sequences in mammalian cells and suggest that mammalian replication initiation sites may be determined by cooperative sequence modules.  相似文献   

7.
We recently showed that replication initiates in the early S period at two closely spaced zones in the 240-kilobase (kb) dihydrofolate reductase (DHFR) amplicon of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Both of these initiation loci (ori-beta and ori-gamma) have previously been cloned in a recombinant cosmid. In this study, we identified a third early-firing initiation locus (ori-alpha) in the much larger DHFR amplicon of the independently isolated methotrexate-resistant Chinese hamster cell line DC3F-A3/4K (A3/4K). We describe the molecular cloning of this newly identified locus and demonstrate by chromosomal walking that ori-alpha lies approximately 240 kb upstream from ori-beta. Using overlapping cosmid clones for more than 450 kb of DNA sequence from this region of the DHFR domain, we have monitored the replication pattern of the amplicons in synchronized A3/4K cells. These studies suggest that ori-alpha, ori-beta, and ori-gamma are the only early-firing initiation sites in this 450-kb sequence. In addition, we have been able to roughly localize the termini between ori-alpha and ori-beta and between ori-alpha and the next origin in the 5' direction. Thus, we have now isolated the equivalent of three early-firing replicons (including their origins) from a well-characterized chromosomal domain. With these tools, it should be possible to determine those properties that are shared by the origins and termini of different replicons and which are therefore likely to be functionally significant.  相似文献   

8.
9.
Modular structure of the human lamin B2 replicator   总被引:6,自引:0,他引:6       下载免费PDF全文
The cis-acting elements necessary for the activity of DNA replication origins in metazoan cells are still poorly understood. Here we report a thorough characterization of the DNA sequence requirements of the origin associated with the human lamin B2 gene. A 1.2-kb DNA segment, comprising the start site of DNA replication and located within a large protein-bound region, as well as a CpG island, displays origin activity when moved to different ectopic positions. Genomic footprinting analysis of both the endogenous and the ectopic origins indicates that the large protein complex is assembled in both cases around the replication start site. Replacement of this footprinted region with an unrelated sequence, maintaining the CpG island intact, abolishes origin activity and the interaction with hORC2, a subunit of the origin recognition complex. Conversely, the replacement of 17 bp within the protected region reduces the extension of the protection without affecting the interaction with hORC2. This substitution does not abolish the origin activity but makes it more sensitive to the integration site. Finally, the nearby CpG island positively affects the efficiency of initiation. This analysis reveals the modular structure of the lamin B2 origin and supports the idea that sequence elements close to the replication start site play an important role in origin activation.  相似文献   

10.
The Chinese hamster dihydrofolate reductase (DHFR) origin of replication consists of a broad zone of potential initiation sites scattered throughout a 55-kb intergenic spacer, with at least three sites being preferred (ori-beta, ori-beta', and ori-gamma). We previously showed that deletion of the most active site or region (ori-beta) has no demonstrable effect on initiation in the remainder of the intergenic spacer nor on the time of replication of the DHFR locus as a whole. In the present study, we have now deleted ori-beta', both ori-beta and ori-beta', an 11-kb region just downstream from the DHFR gene, or the central approximately 40-kb core of the spacer. The latter two deletions together encompass >95% of the initiation sites that are normally used in this locus. Two-dimensional gel analysis shows that initiation still occurs in the early S phase in the remainder of the intergenic spacer in each of these deletion variants. Even removal of the 40-kb core fails to elicit a significant effect on the time of replication of the DHFR locus in the S period; indeed, in the truncated spacer that remains, the efficiency of initiation actually appears to increase relative to the corresponding region in the wild-type locus. Thus, if replicators control the positions of nascent strand start sites in this complex origin, either (i) there must be a very large number of redundant elements in the spacer, each of which regulates initiation only in its immediate environment, or (ii) they must lie outside the central core in which the vast majority of nascent strand starts occur.  相似文献   

11.
The developmentally regulated amplification of the Drosophila third chromosome chorion gene locus requires multiple chromosomal elements. Amplification control element third chromosome (ACE3) appears to function as a replicator, in that it is required in cis for the activity of nearby DNA replication origin(s). Ori-beta is the major origin in the locus, and is a sequence-specific element that is sufficient for high-level amplification in combination with ACE3. Sequence requirements for amplification were examined using a transgenic construct that was buffered from chromosomal position effects by flanking insulator elements. The parent construct supported 18- to 20-fold amplification, and contained the 320 bp ACE3, the approximately 1.2 kb S18 chorion gene and the 840 bp ori-beta. Deletion mapping of ACE3 revealed that an evolutionarily conserved 142 bp core sequence functions in amplification in this context. Several deletions had quantitative effects, suggesting that multiple, partially redundant elements comprise ACE3. S. cerevisiae ARS1 origin sequences could not substitute for ori-beta, thereby confirming the sequence specificity of ori-beta. Deletion mapping of ori-beta identified two required components: a 140 bp 5' element and a 226 bp A/T-rich 3' element called the beta-region that has significant homology to ACE3. Antibody to the origin recognition complex subunit 2 (ORC2) recognizes large foci that localize to the endogenous chorion gene loci and to active transgenic constructs at the beginning of amplification. Mutations in Orc2 itself, or the amplification trans regulator satin eliminated the ORC2 foci. By contrast, with a null mutation of chiffon (dbf4-like) that eliminates amplification, diffuse ORC2 staining was still present, but failed to localize into foci. The data suggest a novel function for the Dbf4-like chiffon protein in ORC localization. Chromosomal position effects that eliminated amplification of transgenic constructs also eliminated foci formation. However, use of the buffered vector allowed amplification of transgenic constructs to occur in the absence of detectable foci formation. Taken together, the data suggest a model in which ACE3 and ori-beta nucleate the formation of a ORC2-containing chromatin structure that spreads along the chromosome in a mechanism dependent upon chiffon.  相似文献   

12.
13.
Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.  相似文献   

14.
Previous radiolabeling and two-dimensional (2-D) gel studies of the dihydrofolate reductase (DHFR) domain of Chinese hamster cells have suggested that replication can initiate at any one of a very large number of inefficient sites scattered throughout the 55-kb intergenic spacer region, with two broad subregions (ori-beta and ori-gamma) preferred. However, high-resolution analysis by a PCR-based nascent strand abundance assay of the 12-kb subregion encompassing ori-beta has suggested the presence of a relatively small number of fixed, highly efficient initiation sites distributed at infrequent intervals that correspond to genetic replicators. To attempt to reconcile these observations, two different approaches were taken in the present study. In the first, neutral-neutral 2-D gel analysis was used to examine replication intermediates in 31 adjacent and overlapping restriction fragments in the spacer, ranging in size from 1.0 to 18 kb. Thirty of 31 fragments displayed the complete bubble arcs characteristic of centered origins. Taking into account overlapping fragments, these data suggest a minimum of 14 individual start sites in the spacer. In the second approach, a quantitative early labeled fragment hybridization assay was performed in which radioactive origin-containing DNA 300 to 1,000 nucleotides in length was synthesized in the first few minutes of the S period and used to probe 15 clones distributed throughout the intergenic spacer but separated on average by more than 1,000 bp. This small nascent DNA fraction hybridized to 14 of the 15 clones, ranging from just above background to a maximum at the ori-beta locus. The only silent region detected was a small fragment lying just upstream from a centered matrix attachment region--the same region that was also negative for initiation by 2-D gel analysis. Results of both approaches suggest a minimum of approximately 20 initiation sites in the spacer (two of them being ori-beta and ori-gamma), with ori-beta accounting for a maximum of approximately 20% of initiations occurring in the spacer. We believe that the results of all experimental approaches applied to this locus so far can be fitted to a model in which the DHFR origin consists of a 55-kb intergenic zone of potential sites that are used with very different efficiencies and which are separated in many cases by a few kilobases or less.  相似文献   

15.
G Tschumper  J Carbon 《Gene》1980,10(2):157-166
The DNA sequence of a 1.45 kb EcoRI fragment from the yeast (Saccharomyces cerevisiae) TRP1 region has been determined. The fragment contains the TRP1 gene and a yeast chromosomal replicator. The TRP1 gene has been located on the fragment by analysis of potential initiation and termination codons in the DNA sequence. This location has been confirmed by subcloning portions of the fragment. Both the 5' and 3' noncoding regions of the TRP1 gene contain sequence homologies with analogous areas surrounding other yeast genes. The yeast replicator has been localized in a region near the 3' end of the TRP1 gene. The DNA sequence in this region contains several structural features which may be involved in the initiation of DNA replication.  相似文献   

16.
17.
18.
19.
The methotrexate-resistant Chinese hamster cell line DC3F/A3-4K (A3/4K) contains at least two prominent dihydrofolate reductase amplicon types. The type I amplicons, constituting approximately 80% of the total, are at least 650 kb in length, but the endpoints have not yet been characterized. The type II sequences represent approximately 20% of amplicons, are 450 kb in length, and are arranged as alternating head-to-head and tail-to-tail repeats. In previous studies on the CHOC 400 line, in which the amplicons are much smaller, a replication initiation locus (ori-beta/ori-gamma) has been shown to reside downstream from the dihydrofolate reductase gene. In a more recent study on the larger amplicons of A3/4K cells, we detected an additional initiation locus (ori-alpha) lying approximately 240 kb upstream from ori-beta/ori-gamma. Interestingly, in vivo labelling experiments suggested that replication forks diverge from ori-alpha only in the downstream direction. This finding suggested either that ori-alpha is a unidirectional origin or that a terminus lies immediately upstream from ori-alpha. However, in this study, we show that ori-alpha is actually very close to the head-to-head palindromic junction sequence between the minor type II amplicons in A3/4K cells; furthermore, ori-alpha is active in the early S period in the type II amplicons but not in the larger type I sequences that lack this palindromic junction. This is the first direct demonstration in mammalian cells that a cryptic origin can be activated by chromosomal rearrangement, presumably by deleting negative regulatory elements or by creating a more favorable chromosomal milieu for initiation.  相似文献   

20.
The cell cycle-dependent, ordered assembly of protein prereplicative complexes suggests that eukaryotic replication origins determine when genomic replication initiates. By comparison, the factors that determine where replication initiates relative to the sites of prereplicative complex formation are not known. In the human globin gene locus previous work showed that replication initiates at a single site 5′ to the β-globin gene when protein synthesis is inhibited by emetine. The present study has examined the pattern of initiation around the genetically defined β-globin replicator in logarithmically growing HeLa cells, using two PCR-based nascent strand assays. In contrast to the pattern of initiation detected in emetine-treated cells, analysis of the short nascent strands at five positions spanning a 40 kb globin gene region shows that replication initiates at more than one site in non-drug-treated cells. Quantitation of nascent DNA chains confirmed that replication begins at several locations in this domain, including one near the initiation region (IR) identified in emetine-treated cells. However, the abundance of short nascent strands at another initiation site ~20 kb upstream is ~4-fold as great as that at the IR. The latter site abuts an early S phase replicating fragment previously defined at low resolution in logarithmically dividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号