首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some recombinant vitamin K-dependent blood coagulation factors (factors VII, IX, and protein C) have become valuable pharmaceuticals in the treatment of bleeding complications and sepsis. Because of their vitamin K-dependent post-translational modification, their synthesis by eukaryotic cells is essential. The eukaryotic cell harbors a vitamin K-dependent gamma-carboxylation system that converts the proteins to gamma-carboxyglutamic acid-containing proteins. However, the system in eukaryotic cells has limited capacity, and cell lines overexpressing vitamin K-dependent clotting factors produce only a fraction of the recombinant proteins as fully gamma-carboxylated, physiologically competent proteins. In this work we have used recombinant human factor IX (r-hFIX)-producing baby hamster kidney (BHK) cells, engineered to stably overexpress various components of the gamma-carboxylation system of the cell, to determine whether increased production of functional r-hFIX can be accomplished. All BHK cell lines secreted r-hFIX into serum-free medium. Overexpression of gamma-carboxylase is shown to inhibit production of functional r-hFIX. On the other hand, cells overexpressing VKORC1, the reduced vitamin K cofactor-producing enzyme of the vitamin K-dependent gamma-carboxylation system, produced 2.9-fold more functional r-hFIX than control BHK cells. The data are consistent with the notion that VKORC1 is the rate-limiting step in the system and is a key regulatory protein in synthesis of active vitamin K-dependent proteins. The data suggest that overexpression of VKORC1 can be utilized for increased cellular production of recombinant vitamin K-dependent proteins.  相似文献   

2.
Hereditary combined vitamin K-dependent clotting factors deficiency (VKCFD) is a rare congenital bleeding disorder resulting from variably decreased levels of coagulation factors II, VII, IX and X as well as natural anticoagulants protein C, protein S and protein Z. The spectrum of bleeding symptoms ranges from mild to severe with onset in the neonatal period in severe cases. The bleeding symptoms are often life-threatening, occur both spontaneously and in a surgical setting, and usually involve the skin and mucosae. A range of non-haemostatic symptoms are often present, including developmental and skeletal anomalies. VKCFD is an autosomal recessive disorder caused by mutations in the genes of either gamma-glutamyl carboxylase or vitamin K2,3-epoxide reductase complex. These two proteins are necessary for gamma-carboxylation, a post-synthetic modification that allows coagulation proteins to display their proper function. The developmental and skeletal anomalies seen in VKCFD are the result of defective gamma-carboxylation of a number of non-haemostatic proteins. Diagnostic differentiation from other conditions, both congenital and acquired, is mandatory and genotype analysis is needed to confirm the defect. Vitamin K administration is the mainstay of therapy in VKCFD, with plasma supplementation during surgery or severe bleeding episodes. In addition, prothrombin complex concentrates and combination therapy with recombinant activated FVII and vitamin K supplementation may constitute alternative treatment options. The overall prognosis is good and with the availability of several effective therapeutic options, VKCFD has only a small impact on the quality of life of affected patients.  相似文献   

3.
The protein hydrolysates of two types, fodder and for microbiological medium, have been obtained in vitro, using protein containing wastes of Iceland scallop fishery (WSF) and enzyme preparation from the red king crab hepatopancreas. The degree of protein degradation and composition of obtained hydrolysates were analyzed. Intensive protein hydrolysis was necessary to obtain the microbiological diagnostic cultural media that fit trophic requirements for 12 microbial test-cultures. Addition of the fodder protein hydrolysate to diet of juvenile salmons Salmo salar during mixed feeding produces a positive effect on their survival; the 5 and 20% replacement of fish flour by the fodder hydrolysate results in a reduction of fish mortality by 21 and 57%, respectively. The living weight of chickens increased by 15% after substitution of the 10% fish flour by the fodder WSF hydrolysate in their diet. The results obtained can be explained by a more effective assimilation of partly hydrolyzed proteins in comparison with native ones.  相似文献   

4.
The vitamin K-dependent gamma-carboxylation system is responsible for post-translational modification of vitamin K-dependent proteins, converting them to Gla-containing proteins. The system consists of integral membrane proteins located in the endoplasmic reticulum membrane and includes the gamma-carboxylase and the warfarin-sensitive enzyme vitamin K(1) 2,3-epoxide reductase (VKOR), which provides gamma-carboxylase with reduced vitamin K(1) cofactor. In this work, an in vitro gamma-carboxylation system was designed and used to understand how VKOR and gamma-carboxylase work together as a system and to identify factors that can regulate the activity of the system. Results are presented that demonstrate that the endoplasmic reticulum chaperone protein calumenin is associated with gamma-carboxylase and inhibits its activity. Silencing of the calumenin gene with siRNA resulted in a 5-fold increase in gamma-carboxylase activity. The results provide the first identification of a protein that can regulate the activity of the gamma-carboxylation system. The propeptides of vitamin K-dependent proteins stimulate gamma-carboxylase activity. Here we show that the factor X and prothrombin propeptides do not increase reduced vitamin K(1) cofactor production by VKOR in the system where VKOR is the rate-limiting step for gamma-carboxylation. These findings put calumenin in a central position concerning regulation of gamma-carboxylation of vitamin K-dependent proteins. Reduced vitamin K(1) cofactor transfer between VKOR and gamma-carboxylase is shown to be significantly impaired in the in vitro gamma-carboxylation system prepared from warfarin-resistant rats. Furthermore, the sequence of the 18-kDa subunit 1 of the VKOR enzyme complex was found to be identical in the two rat strains. This finding supports the notion that different forms of genetic warfarin resistance exist.  相似文献   

5.
The bovine plasma zymogen prothrombin contains a number of gamma-carboxyglutamic acid residues which are not found in an abnormal prothrombin produced when cattle are given the vitamin K antagonist dicoumarol. These modified glutamic acid residues appear to be formed post-translationally by a reaction which requires vitamin K. It has been shown that postmitochondrial supernates from vitamin K-deficient rats incorporate added H-14-CO3- minus into microsomal proteins upon the addition of vitamin K. This incorporation is dependent upon the presence of the prothrombin precursor in the microsomal preparations, and upon factors which are present in the postmicrosomal supernatant. Most of the radioactive protein which can be obtained from the microsomal pellet by extraction with 0.25% Triton X-100 has been identified as prothrombin and it can be shown that all of the radioactivity is in the amino-terminal activation fragment of prothrombin. This portion of the protein has previously been shown to contain the gamma-carboxyglutamic acid residues. Hydrolysis of the purified radioactive prothrombin resulted in a loss of 50% of the radioactivity and subsequent chromatography of the amino acid hydrolyzate demonstrated that the remaining radioactivity was entirely in glutamic acid. These results are consistent with the hypothesis that all of the H-14-CO3- minus was incorporated into the carboxyl groups of gamma-carboxyglutamic acid residues.  相似文献   

6.
How regulated protein translocation can produce switch-like responses   总被引:6,自引:0,他引:6  
It is widely appreciated that the regulated translocation of signaling proteins can increase the specificity and speed of signal transduction. It is less obvious that regulated translocation can also, in principle, turn a graded response into a more switch-like one. For example, if two or more signaling proteins are induced to translocate, the result can be a switch-like, ultrasensitive response. A switch-like response will also occur if translocation raises the local concentration of a signaling protein sufficiently to partially saturate the enzyme that inactivates it. These mechanisms are likely to make the mitotic activation of CDC2 (which is accompanied by the nuclear translocation of both CDC2–cyclin-B1 and its activator, CDC25C) and the growth-factor-induced activation of MAP kinase (which, upon sustained activation, concentrates in the nucleus and might thereby partially saturate the relevant MAP-kinase phosphatases) more switch-like.  相似文献   

7.
Gamma-carboxylation of vitamin K-dependent proteins is dependent on formation of reduced vitamin K1 (Vit.K1H2) in the endoplasmic reticulum (ER), where it works as an essential cofactor for gamma-carboxylase in post-translational gamma-carboxylation of vitamin K-dependent proteins. Vit.K1H2 is produced by the warfarin-sensitive enzyme vitamin K 2,3-epoxide reductase (VKOR) of the vitamin K cycle that has been shown to harbor a thioredoxin-like CXXC center involved in reduction of vitamin K1 2,3-epoxide (Vit.K>O). However, the cellular system providing electrons to the center is unknown. Here data are presented that demonstrate that reduction is linked to dithiol-dependent oxidative folding of proteins in the ER by protein disulfide isomerase (PDI). Oxidative folding of reduced RNase is shown to trigger reduction of Vit.K>O and gamma-carboxylation of the synthetic gamma-carboxylase peptide substrate FLEEL. In liver microsomes, reduced RNase-triggered gamma-carboxylation is inhibited by the PDI inhibitor bacitracin and also by small interfering RNA silencing of PDI in HEK 293 cells. Immunoprecipitation and two-dimensional SDS-PAGE of microsomal membrane proteins demonstrate the existence of a VKOR enzyme complex where PDI and VKORC1 appear to be tightly associated subunits. We propose that the PDI subunit of the complex provides electrons for reduction of the thioredoxin-like CXXC center in VKORC1. We can conclude that the energy required for gamma-carboxylation of proteins is provided by dithiol-dependent oxidative protein folding in the ER and thus is linked to de novo protein synthesis.  相似文献   

8.
The plasma of laying hens contains a specific biotin-binding protein that appears to be identical with an egg-yolk biotin-binding protein. Both proteins are saturated with biotin and require elevated temperatures to effect the exchange of [14C]biotin for the protein-bound vitamin. The heat-exchange curve in each case is the same and differs sharply from that of avidin, the egg-white biotin-binding protein. On Sephadex G-100 gel filtration, plasma and yolk biotin-binding proteins were each eluted slightly ahead of avidin (mol.wt. 68,000), suggesting that they are of similar molecular weight. Plasma and yolk biotin-binding proteins required the same ionic strength to be eluted from a phosphocellulose ion-exchange column. Both the plasma and yolk biotin-binding proteins had a pI of 5; avidin has a pI of 10. Plasma biotin-binding protein cross-reacted with antiserum to yolk biotin-binding protein and showed a precipitin line of identity with purified yolk biotin-binding protein. It is suggested that biotin-binding plays an important role in mediating the transport of the vitamin from the bloodstream to the developing oocyte.  相似文献   

9.
Actin participates in more protein-protein interactions than any other known protein, including the interaction of actin with itself to form the helical polymer F-actin. The vast majority of actin-binding proteins (ABPs) can be grouped into conserved families. Only a handful of structures of complexes of actin with ABPs have been determined so far. These structures are starting to reveal how certain ABPs, including gelsolin, vitamin D-binding protein and Wiskott-Aldrich syndrome protein (WASP)-homology domain-2-related proteins, share a common actin-binding motif. It is proposed here that other ABPs, including actin itself, might share this motif, providing a mechanism whereby ABPs and actin compete for a common binding site. Of particular interest is a hydrophobic pocket that mediates important interactions in five of the existing structures of actin complexes. As the pocket remains accessible in F-actin, it is proposed that this pocket represents a primary target for F-actin-binding proteins, such as calponin-homology-related proteins and myosin.  相似文献   

10.
Results concerning the contents of retinol in the liver, residual yoke of 25-day embryos and yoke of eggs depending on the level of vitamins A, D3 and E in the diet of geese by grey Obroshin breeds in reproductive period are presented in the paper. It is established, that vitamin D3 reduces the level of retinol deposition in the tissues of embryos and yoke of eggs of geese, and addition of vitamins A and E to a diet of geese raises the level of retinol both in the liver and residual yoke of embryos, and in yokes of geese eggs. Besides the data about changes of fatty-acid spectrum of common lipids and contents of lipid peroxidations products in tissues of the liver and pectoral muscles of 25-day embryos are presented in the paper depending on the level of vitamins A, D3 and E in geese diet during their reproductive period. Introduction of vitamin A--in quantity of 10000 IU, vitamin D3--in quantity of 3000 IU, in the composition of mixed fodder of geese during the reproductive period and vitamin E in quantity 35 IU on 1 kg to mixed fodder optimizes fatty-acid structure of the common lipids and the level of peroxidations lipids products in the liver and pectoral muscles of embryos.  相似文献   

11.
Transcobalamin I and transcobalamin III have been purified approximately 6,000,000- and 3,000,000-fold, respectively, from normal human plasma using a purification scheme consisting of immunoadsorption, dialysis against 7.5 M guanidine HCl to remove endogenous vitamin B12, and affinity chromatography on vitamin B12-Sepharose. The two proteins were separated from each other subsequently by chromatography on DEAE-cellulose. The vitamin B12-binding protein present in granulocytes obtained from normal subjects has been purified approximately 5000-fold using affinity chromatography on vitamin B12-Sepharose as the sole purification technique. The final preparations of all three proteins were homogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Transcobalamin I and transcobalamin III belong to the R-typed class of vitamin B12-binding proteins and are indistinguishable from each other, and from the human granulocyte, milk, and saliva R-type vitamin B12-binding proteins, when studied by immunodiffusion with rabbit anti-human milk vitamin B12-binding protein sera. The carbohydrate compositions, expressed as moles of carbohydrate per mole of vitamin B12, of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12-binding protein, respectively, are: sialic acid, 18, 11, 11; fucose, 9, 20, 24; galactose, 41, 51, 46; mannose, 24, 22, 20; galactosamine, 2, 2, 2; and glucosamine, 46, 54, 46. The high sialic acid content of transcobalamin I appears to account for the fact that this protein elutes after transcobalamin III and the normal granulocyte vitamin B12-binding protein during chromatography on DEAE-cellulose. This observation provides support for the hypothesis that differences among the R-type vitamin B12-binding proteins are due to differences in carbohydrate content. The similarities in carbohydrate composition and other properties of transcobalamin III and the granulocyte vitamin B12-binding protein provide support for the hypothesis that human plasma transcobalamin III is derived from granulocytes. The differences observed between transcobalamin I and the normal granulocyte vitamin B12-binding protein suggest that transcobalamin I may not be derived from granulocytes.  相似文献   

12.
Data on protein yields show that forage crops, particularly alfalfa, produce several times more protein per acre than do seed crops. Amino acid analyses and estimations of biological values by enzymatic hydrolysis and feeding trials indicate that protein concentrates from green plants have high nutritive value. The protein concentrates from 10 plant species had a similar amino acid composition and biological value which indicates that good protein might be obtained from many plant species. It is suggested that the use of the fibrous residue as a feed for ruminants and the use of the protein concentrate as a high protein feed or base for processing into new protein foods may make it possible for the production of protein from green plants to compete with other sources of protein. This would markedly increase protein production per acre and allow the use of new plant species in our agriculture. The need for more research on protein production from different types of green plants and on ways to harvest, concentrate and process their proteins into edible forms is discussed.  相似文献   

13.
Barley biotypes from the world collection differ in their storage protein content even till 200 %. This is the first report including results of the research, in which the structure of grains containing different amount of protein was tested to explain this difference. The endosperm was investigated using scanning electron microscopy. The structure of the aleurone layer, storing large quantities of protein, did not differ between the high- and low-protein forms of barley. It has been proven that the large quantities of kernel protein may be stored in some cells of the zone adjacent to the aleurone layer, defined as the subaleurone cells. It has been shown that morphologically uniform kernels of the same plant and even of the same ear can vary greatly with respect to the number of these subaleurone cells. The purpose of the study was an examination of variation in protein structure in single kernels of a fodder, a brewery and in an extra high-protein form of barley as well. Moreover the studies were aimed to detect qualitative differences in the subaleurone protein. Application of mass spectrometry made possible the identification of several kinds of proteins which were present in subaleurne layer of kernels. In the granule-bound protein fraction isolated from the subaleurone type kernels, a much stronger representation of some protein was found, with the molecular mass between 29 and 45 kDa, in comparison with the low-protein kernels. It is supposed, that these protein are isoforms of z-type serpin and B3-hordein.  相似文献   

14.
Using vitamin D-resistant New World primates as model of natural diversity for sterol/steroid action and metabolism, two families of novel intracellular vitamin D regulatory proteins have been discovered and their human homologs elucidated. The first family of proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), initially considered to function only as pre-mRNA-interacting proteins, have been demonstrated to be potent cis-acting, trans-dominant regulators of vitamin D hormone-driven gene transactivation. The second group of proteins bind 25-hydroxylated vitamin D metabolites. Their overexpression increases vitamin D receptor (VDR)-directed target gene expression. We found that these intracellular vitamin D binding proteins (IDBPs) are homologous to proteins in the heat shock protein-70 family. Our ongoing studies indicate directly or indirectly through a series of protein interactions that the IDBPs interact with hydroxylated vitamin D metabolites and facilitate their intracellular targeting.  相似文献   

15.
16.
Modulation of signal transduction by vitamin E   总被引:1,自引:0,他引:1  
The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.  相似文献   

17.
Screening lambda cDNA libraries from rat liver with antibody to native rat liver sulfite oxidase (RLSO) showed cross-reaction with two proteins that belong to the same gene family: serum albumin and vitamin D-binding protein. Antibodies raised against native RLSO or sodium dodecyl sulfate-denatured protein cross-reacted with these proteins by Western blot analysis. The relative effectiveness of RLSO antibody binding was estimated to be 1/5 for rat serum albumin and 1/10 for rat vitamin D-binding protein. This result was not caused by contaminating proteins in the RLSO used for immunization as the RLSO preparation did not react with rat serum albumin antibody. RLSO antibodies, selected for their ability to bind rat serum albumin immobilized on nitrocellulose, recognized both rat serum albumin and RLSO. RLSO antibody, with albumin-reactive antibody removed, still recognized vitamin D-binding protein, suggesting that multiple determinants specific to each protein are involved in the cross-reaction. Comparison of RLSO antibody binding to the rat and human proteins indicated that the determinants were species-specific. cDNA clones identified by screening cDNA libraries with RLSO antibody demonstrated that these determinants reside in the C-terminal domain of these proteins. These results suggest that these proteins contain some common immunological features and may be evolutionarily related.  相似文献   

18.
Kim DW  Kim CK  Choi SH  Choi HS  Kim SY  An JJ  Lee SR  Lee SH  Kwon OS  Kang TC  Won MH  Cho YJ  Cho SW  Kang JH  Kim TY  Lee KS  Park J  Eum WS  Choi SY 《Biochimie》2005,87(5):481-487
Pyridoxal kinase (PK) catalyses the phosphorylation of vitamin B6 to pyridoxal-5'-phosphate (PLP). A human brain PK gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-PK fusion protein. The expressed and purified Tat-PK fusion proteins transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously in culture media. Once inside the cells, the transduced Tat-PK proteins showed catalytic activity and are stable for 48 h. The intracellular concentration of PLP, which is known as a biologically active form of vitamin B6, was increased by pre-treatment of Tat-PK to the PC12 cells. Those results suggest that the transduction of Tat-PK fusion protein can be one of the ways to regulate the PLP level and to replenish this enzyme in the various neurological disorders related to vitamin B6.  相似文献   

19.
It was shown that vitamin E decreased the stimulating role of oxidative burst activators which influenced on Ca(2+)-dependent mechanisms (A23187, verapamil, FMLP). Jointly addition of this vitamin and blood plasma contained tocopherol-binding proteins influenced on mechanisms associated with protein kinase C. It was shown that Ca ions can also take part in tocopherol's action on blast transformation of lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号