首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have isolated undulin, an extracellular matrix protein associated with the surface of collagen fibrils, from chicken embryos. The protein showed a molecular mass of about 600 kDa and is composed of three 210-kDa subunits linked by reducible as well as non-reducible bonds. In contrast to human undulin which reportedly is devoid of collagenous sequences, the chicken protein contained a short triple-helical segment that was sensitive to digestion by bacterial collagenase. Screening of an expression library with affinity-purified antibodies yielded two cDNA clones specific for chicken undulin. Analysis of the amino acid sequence deduced from the nucleotide sequence of these clones showed that the human and the chicken protein shared 71% sequence identity. At the amino-terminus both polypeptides contained several similar repeats related to the type III modules found in fibronectin. Towards the carboxyl terminus, however, the two sequences diverged substantially from each other. While the human sequence terminated in a proline-rich segment, the chicken sequence continued with a domain related to von Willebrand factor, with a domain similar to the noncollagenous domain NC4 of type IX collagen and with a typical collagenous triple helix. A short segment of this sequence was found to be identical with the published sequence of a bovine peptide derived from type XIV collagen. Our protein must therefore represent chicken type XIV collagen. One way to explain these results is the possibility that undulin exists in at least two alternatively spliced variants, one lacking the collagenous domain, as described initially for human undulin, and one containing the triple-helical domain, as found in type XIV collagen.  相似文献   

3.
The study assessed immunohistochemically the location and distribution of various non-collagenous matrix proteins (fibronectin, laminin, tenascin-C, osteocalcin, thrombospondin-1, vitronectin and undulin) in musculoskeletal tissues of rat. Fibronectin and thrombospondin-1 were found to be ubiquitous in the studied tissues. High immunoreactivity of these proteins was found in the extracellular matrix of the anatomical sites where firm bindings are needed, i.e. between muscle fibres and fibre bundles, between the collagen fibres of a tendon and at myotendinous junctions, osteotendinous junctions and articular cartilage. Tenascin-C was found in the extracellular matrix of regions where especially high forces are transmitted from one tissue component to the other, such as myotendinous junctions and osteotendinous junctions. Laminin was demonstrated in the basement membranes of the muscle cells and capillaries of the muscle–tendon units. Osteocalc in immunoreactivity concentrated in the extracellular matrix of areas of newly formed bone tissue, i.e. in the subperiosteal and subchondral regions, osteoid tissue and mineralized fibrocartilage zone of the osteotendinous junction. Mild vitronectin activity could be seen in the extracellular matrix of the osteotendinous and myotendinous junctions, and high activity around the bone marrow cells. Undulin could be demonstrated in the extracellular matrix (i.e. on the collagen fibres) of the tendon and epimysium only. However, it was co-distributed with fibronectin and tenascin-C. Together, these findings on the normal location and distribution of these non-collagenous proteins in the musculoskeletal tissues help to form the basis of knowledge against which the location and distribution of the these proteins in various pathological processes could be compared.  相似文献   

4.
Collagen family of proteins   总被引:39,自引:0,他引:39  
Collagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells.  相似文献   

5.
6.
A partial cDNA sequence coding for the human extracellular matrix protein undulin has been completed. The completed sequence provides conclusive evidence for the suggested identity of undulin and collagen type XIV. Two differently sized polyproteins of 1780 and 1796 amino acids, with an overall amino acid sequence identity of 75% compared to chicken CXIV, emerge from variant 3′ sequence ends encoding the C-terminal non-collagenous (NC) NC1 domain of human collagen type XIV.  相似文献   

7.
Interaction of link protein with collagen   总被引:6,自引:0,他引:6  
Link protein (Mr = 42,000) is an integral component of cartilage as well as of some noncartilagenous tissues. In cartilage, it forms a macromolecular complex with cartilage proteoglycan and hyaluronic acid, but its function in other tissues is unknown. We provide evidence here that the link protein of cartilage binds well to native collagen types I and III. The binding occurs only if both link protein and collagen are native. The binding of link protein to collagen type fibrils is higher than to monomeric collagen. Link protein binding to collagen fibrils is saturable and occurs at molar ratio of collagen to link protein of 7-13:1. These data suggest that the link protein binds to collagen and that the binding requires the collagen to be in its native triple helical structure. This interaction may play a role in collagen fibril formation.  相似文献   

8.
Electron histochemical investigations of mammalian and echinoderm tissues, using cupromeronic blue to stain proteoglycans (PGs) specifically in critical electrolyte concentration methods, showed that collagen fibrils are associated with keratan sulphate and chondroitin (dermatan) sulphate ('tadpole') PGs at the a, c, d and e bands on the fibril surface, giving rise to the 'one proteoglycan: one binding site' hypothesis. Intra-fibrillar PGs have been observed, distributed in a regular way which suggests that collagen fibrils are aggregates of 'protofibrils', some of which carry PGs at their surfaces. A scheme for remodelling of collagen fibrils, based on recycling of these protofibrils, is outlined. The choice of which tadpole PG to use to carry out a given function is decided to a considerable extent by the availability of oxygen to the relevant tissue element.  相似文献   

9.
Two recently identified collagen molecules, termed twelve-like A and twelve-like B (TL-A and TL-B) have properties similar to type XII collagen. These molecules have been localized in human and calf tissues by immunoelectron microscopy. The observations strongly suggest that both molecules are located along the surface of banded collagen fibers. The epitopes recognized by the antibodies are contained in large, nontriple-helical domains at one end of the collagen helix. The epitopes are visualized at a distance from the surface of the banded fibers roughly equal to the length of the nonhelical domains, suggesting that the nonhelical domains extend from the fibril, while the triple-helical domains are likely to bind directly to the fibril surface. Occasionally, both TL-A and TL-B demonstrate periodic distribution along the fibril surface. The period corresponds to the primary interband distance of the banded fibrils. Not all fibrils in a fiber bundle are labeled, nor is the labeling continuous along the length of labeled fibrils. Simultaneous labeling of TL-A and type VI collagen only rarely shows colocalization, suggesting that TL-A and TL-B do not mediate interactions between the type VI collagen beaded filaments and banded collagen fibrils. Also, interfibrillar distances are approximately equivalent in the presence and absence of these type XII-like molecules. While the results do not directly indicate a specific function for these molecules, the localization at the fibril surface suggests that they mediate interactions between the fibrils and other matrix macromolecules or with cells.  相似文献   

10.
Immunolocalisation of type XIV collagen/undulin in the human mammary gland revealed greater deposition in the interlobular stroma than in the intralobular stroma. The interlobular stroma is located between the breast lobules and their associated intralobular stroma. Fibroblasts isolated from the interlobular stroma synthesised 3- to 5-fold more type XIV collagen/undulin than intralobular fibroblasts, but synthesised type I and type IV collagens in similar amounts. The differential expression of type XIV collagen/undulin was maintained with passage in culture. The results suggest a role for type XIV collagen/undulin in stabilising dense collagen fibrils. The maintenance of two types of structurally distinct stromas may be important during developmental processes in the mammary gland.  相似文献   

11.
The collagenous tissues of echinoderms, which have the unique capacity to rapidly and reversibly alter their mechanical properties, resemble the collagenous tissues of other phyla in consisting of collagen fibrils in a nonfibrillar matrix. Knowledge of the composition and structure of their collagen fibrils and interfibrillar matrix is thus important for an understanding of the physiology of these tissues. In this report it is shown that the collagen molecules from the fibrils of the spine ligament of a seaurchin and the deep dermis of a sea-cucumber are the same length as those from vertebrate fibrils and that they assemble into fibrils with the same repeat period and gap/overlap ratio as do those of vertebrate fibrils. The distributions of charged residues in echinoderm and vertebrate molecules are somewhat different, giving rise to segment-long-spacing crystallites and fibrils with different banding patterns. Compared to the vertebrate pattern, the banding pattern of echinoderm fibrils is characterized by greatly increased stain intensity in the c3 band and greatly reduced stain intensity in the a3 and b2 bands. The fibrils are spindle-shaped, possessing no constant-diameter region throughout their length. The shape of the fibrils is mechanically advantageous for their reinforcing role in a discontinuous fiber-composite material.  相似文献   

12.
Type-I collagen is the most abundant extracellular matrix in bones and modulates various functions of osteoblasts. We prepared two different structures of type-I collagen on tissue culture grade polystylene (TCPS) surfaces, one is feltwork structure of filamentous molecules from acid solutions (ACs) and the other is network structure of fibrils from neutral solutions (NCs), to examine effects of the structures on the maturation process of osteoblast-like cells. No significant differences of cell proliferation were observed between TCPS and ACs, but NCs delayed the proliferation. In initial cell attachment, the cells on ACs had tense lamellipodia with sharp tips, while those on NCs had loose lamellipodia. No detectable differences in levels of expressed integrin alpha2- and alpha5-subunits were observed between the structures. Although the matrix mineralization in NCs was also delayed in comparison with TCPS and ACs, fully mineralized levels in NCs were the same as those of TCPS and ACs. In addition, although we examined the effects of densities of pre-adsorbed collagen molecules on osteoblast maturation, the effects were less serious than those of the structures. This study suggests that the structures of collagen affect proliferation and mineralization of osteoblast-like cells.  相似文献   

13.
Monoclonal antibodies that recognize an epitope within the triple helix of type III collagen have been used to examine the distribution of that collagen type in human skin, cornea, amnion, aorta, and tendon. Ultrastructural examination of those tissues indicates antibody binding to collagen fibrils in skin, amnion, aorta, and tendon regardless of the diameter of the fibril. The antibody distribution is unchanged with donor age, site of biopsy, or region of tissue examined. In contrast, antibody applied to adult human cornea localizes to isolated fibrils, which appear randomly throughout the matrix. These studies indicate that type III collagen remains associated with collagen fibrils after removal of the amino and carboxyl propeptides, and suggests that fibrils of skin, tendon, and amnion (and presumably many other tissues that contain both types I and III collagens) are copolymers of at least types I and III collagens.  相似文献   

14.
The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce cartilage fibrils completely devoid of collagen IX. Newborn collagen IX knockout mice exhibited significantly decreased matrilin-3 and cartilage oligomeric matrix protein (COMP) signals, particularly in the cartilage primordium of vertebral bodies and ribs. In the absence of collagen IX, a substantial amount of matrilin-3 is released into the medium of cultured chondrocytes instead of being integrated into the cell layer as in wild-type and COMP-deficient cells. Gene expression of matrilin-3 is not affected in the absence of collagen IX, but protein extraction from cartilage is greatly facilitated. Matrilin-3 interacts with collagen IX-containing cartilage fibrils, while fibrils from collagen IX knockout mice lack matrilin-3, and COMP-deficient fibrils exhibit an intermediate integration. In summary, the integration of matrilin-3 into cartilage fibrils occurs both by a direct interaction with collagen IX and indirectly with COMP serving as an adapter. Matrilin-3 can be considered as an interface component, capable of interconnecting macromolecular networks and mediating interactions between cartilage fibrils and the extrafibrillar matrix.  相似文献   

15.
In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin, and tendon. Here, we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy (AFM)-based force spectroscopy (FS). The elongation profiles show that in vitro-assembled human type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurring within the fibrils in the 1.5- to 4.5-nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in the extracellular matrix (ECM) remodeling associated with tissue growth and morphogenesis.  相似文献   

16.
Type VII collagen forms an extended network of anchoring fibrils   总被引:23,自引:7,他引:16  
Type VII collagen is one of the newly identified members of the collagen family. A variety of evidence, including ultrastructural immunolocalization, has previously shown that type VII collagen is a major structural component of anchoring fibrils, found immediately beneath the lamina densa of many epithelia. In the present study, ultrastructural immunolocalization with monoclonal and monospecific polyclonal antibodies to type VII collagen and with a monoclonal antibody to type IV collagen indicates that amorphous electron-dense structures which we term "anchoring plaques" are normal features of the basement membrane zone of skin and cornea. These plaques contain type IV collagen and the carboxyl-terminal domain of type VII collagen. Banded anchoring fibrils extend from both the lamina densa and from these plaques, and can be seen bridging the plaques with the lamina densa and with other anchoring plaques. These observations lead to the postulation of a multilayered network of anchoring fibrils and anchoring plaques which underlies the basal lamina of several anchoring fibril-containing tissues. This extended network is capable of entrapping a large number of banded collagen fibers, microfibrils, and other stromal matrix components. These observations support the hypothesis that anchoring fibrils provide additional adhesion of the lamina densa to its underlying stroma.  相似文献   

17.
Fibrillar collagen–integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril–integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.  相似文献   

18.
An extracellular glycoprotein (gp 115) with an apparent Mr = 115,000 isolated from chick aortas (Bressan, G. M., I. Castellani, A. Colombatti, and D. Volpin, 1983, J. Biol. Chem., 258:13262-13267), was used to immunize mice. The antisera were shown to specifically recognize gp 115 by numerous criteria: a major band around Mr = 115,000 plus minor bands of lower Mr were visible by immunoblotting on aorta extracts, and a similar pattern was observed with a monoclonal antibody; no cross-reactivity was detected by radioimmunobinding with other extracellular proteins, namely, fibronectin, laminin, and collagen types I, III, IV, V, and VI. Antigen distribution on frozen tissue sections from newborn chicks was investigated by using affinity-purified antibody. Strong immunoreactivity was always found in blood vessels. In the digestive tract, the fluorescent staining was localized both at the level of muscular layers and in the stromal matrix of the villi. Within skeletal muscle and myocardium, staining was associated with large connective tissue bundles and the matrix around each muscle fiber. Intense fluorescence was observed in the kidney, in smooth muscle cells rich areas of parabronchi, and within the portal space and along liver sinusoids. The antigen was not detected at the epidermal-dermal junction; immunoreactivity in the dermis was present as a diffuse fibrillar pattern. That the antigen detected by immunofluorescence in the various organs was indeed gp 115 was demonstrated by immunoblotting analysis: as in aorta extracts, a major band around Mr = 115,000 was detected in several tissues. Antibody-reacting material was also incorporated into the extracellular matrix produced by embryo smooth muscle cells grown in vitro and was organized as a meshwork of fine fibrils.  相似文献   

19.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

20.
Dermatan sulphate proteoglycans have been extracted from bovine lung with 2.0 M CaCl2 and isolated using CsCl density gradient centrifugation, DEAE ion-exchange chromatography, gel chromatography and preparative sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Ultrastructurally these proteoglycans are specifically associated with collagen fibrils. Dermatan sulphate (Mr 15.10(3)-35.10(3), with a strong prevalence for the higher Mr) is link via an O-glycosidic bond to a protein core, which is rich in Asx, Glx and Leu. Of the total uronic acid, 91% is iduronic acid. A part of the glucuronic acid residues is located near the protein core and a large cluster of disaccharides is devoid of glucuronic acid residues. An inhibition enzyme immunoassay has been developed to quantitate the proteoglycan. A model for the interaction between dermatan sulphate proteoglycans and collagen fibrils is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号