首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P G Eipers  J M Lahti  V J Kidd 《Genomics》1992,13(3):613-621
  相似文献   

2.
D1S1, a human anonymous DNA clone originally called lambda Ch4A-H3 or lambda H3, was mapped by two other laboratories to human chromosome 1p36 by in situ hybridization but its localization was not confirmed using a different mapping method. We used a panel of human-hamster somatic cell hybrids to show that there are copies of D1S1 on both chromosomes 1 and 3. The D1S1 clone itself is from chromosome 3, and part of it is duplicated at least twice on chromosome 1. A high frequency HindIII polymorphism detected by D1S1, believed to be at chromosome 1p36 on the basis of the in situ hybridization data, maps instead to chromosome 3. This finding demonstrates the importance of using two mapping methods to verify the localization of a gene or DNA segment, particularly a polymorphic one which itself may be used in mapping studies. It also raises the question of why in situ hybridization detected a duplicated portion of a clone but not the chromosomal origin of the clone itself.  相似文献   

3.
DNA polymerase alpha and primase are two key enzymatic components of the eukaryotic DNA replication complex. In situ hybridization of cloned cDNAs for mouse DNA polymerase alpha and for the two subunits of mouse primase has been utilized to physically map these genes in the mouse genome. The DNA polymerase alpha gene (Pola) was mapped to the mouse X chromosome in region C-D. The gene encoding the p58 subunit of primase (Prim2) was located to mouse chromosome 1 in region A5-B and the p49 subunit gene (Prim1) was found to be on mouse chromosome 10 in the distal part of band D that is close to the telomere. Current knowledge of mouse and human conserved chromosomal regions along with the findings presented here lead to predictions of where the genes for the DNA primase subunits may be found in the human genome: the p58 subunit gene may be on human chromosome 2 and the p49 subunit gene on human chromosome 12. The mapping of Pola to region C-D of the mouse X chromosome adds a new marker in a conserved region between the mouse X chromosome and region Xp21-22.1 of the human X chromosome.  相似文献   

4.
Wang G  Huang CH  Zhao Y  Cai L  Wang Y  Xiu SJ  Jiang ZW  Yang S  Zhao T  Huang W  Gu JR 《Cell research》2000,10(4):311-323
To elucidate the molecular pathology underlying the development of hepatocellular carcinoma (HCC),we used 41 highly polymorphic microsatellite markers to examine 55 HCC and corresponding non-tumor liver tissues on chromosome 9,16 and 17.Loss-of-heterozygosity(LOH) is observed with high frequency on chromosomal region 17p13(36k/55,65%),9q21-p23(28/55,51%),16q21-23(27/55,49%) in tumors.Meanwhile,microsatellite instability is rarely found in these microsatellite loci.Direct sequencing was performed to detect the tentative mutation of tumor wuppressor genes in these regions:p53,MTS1/p16,and CDH1/E-cadherin.Wihin exon 5-9 of p53 gene,14 out of 55 HCC specimens(24%) have somatic mutations,and nucleotide deletion of this gene is reported in HCC for the first time.Mutation in MTS1/p16 is found only in one tumor case.We do not find mutations in CDH1/E-cadherin.Furthermore,a statistically significant correlation is present between p53 gene mutation and loss of chromosome region 16q21-q23 and 9p21-p23,which indicates that synergism between p53 inactivation and deletion of 16q21-q23 and 9p21-p23 may play a role in the pathogenesis of HCC.  相似文献   

5.
The chromosomal location of the human ubiquitin genes has been evaluated by in situ hybridization. Because of the conservation of the ubiquitin sequence, coding-region probes cannot distinguish between specific ubiquitin genes and reveal ubiquitin sequences in a number of different chromosomal regions. The major sites of hybridization with a coding-region probe include 17p11.1-p12, 12p24.2-q24.32, and 2q21-q24, with weaker hybridization over 1p3, 1q4, 2q3, and 13q. Hybridization with a probe isolated from the UbB gene intron indicated that this gene is located within the region 17p11.1-17p12. This region showed the strongest hybridization with the coding-region probe and is presumably also the location of the duplicated UbB pseudogene.  相似文献   

6.
Summary To define more precisely, in molecular terms, the region involved in Beckwith-Wiedemann syndrome (BWS), we have studied patients with BWS and a constitutional duplication of 11p15 using eight 11p15 markers. In the first case with a de novo duplication and extra material on 11p, the region spanning pter to CALCA, excluded, was duplicated. In the second case, the rearrangement was characterized using somatic cell hybrids established with lymphocytes from the father who carried a balanced translocation t(11;18)(p15.4;p11.1). The breakpoint lay exactly in the same region. It could thus be inferred that the two sons, who were the first cases reported of BWS with dup11p15 and adrenocortical carcinoma (ADCC), carried a duplication similar to that observed in the first case. Together with evidence for specific somatic chromosomal events leading to loss of 11p15 alleles in familial cases of ADCC, it can be hypothesized that a gene involved in predisposition to ADCC maps to region 11p15.5.  相似文献   

7.
Six loci, apoliproprotein B (including Ag(x) antigen), immunoglobulin kappa constant region (IGKC), luteinizing hormone/choriogonadotrophin receptor, avian myelocytomatosis viral related oncogene, neuroblastoma derived, ornithine decarboxylase, and proopiomelanocortin (adrenocorticotropin/beta-lipotropin) (POMC), were newly assigned to sheep chromosome 3p using a chromosomally characterized minipanel of sheep-hamster cell hybrids. Isotopic in situ hybridization of IGKC to sheep chromosome 3p22–p17 is reported, confirming the cell hybrid assignment. As these loci are all known to map to human chromosome 2p, this study demonstrates that this chromosomal segment is extensively conserved in sheep. Only POMC has been previously assigned to cattle chromosome 11, which is the equivalent of sheep chromosome 3p. Therefore, we predict that the other loci assigned in this study to sheep 3p are likely to be located on cattle 11. The provisional assignment of an additional locus, annexin-like to sheep chromosome 3p is also reported.  相似文献   

8.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

9.
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disease with bone marrow failure and predisposition to cancer as major features, often accompanied by developmental anomalies. The cells of patients with FA are hypersensitive to DNA cross-linking agents in terms of cell survival and chromosomal breakage. Of the eight complementation groups (FA-A to FA-H) distinguished thus far by cell fusion studies, the genes for three-FANCA, FANCC, and FANCG-have been identified, and the FANCD gene has been localized to chromosome 3p22-26. We report here the use of homozygosity mapping and genetic linkage analysis to map a fifth distinct genetic locus for FA. DNA from three families was assigned to group FA-E by cell fusion and complementation analysis and was then used to localize the FANCE gene to chromosome 6p21-22 in an 18.2-cM region flanked by markers D6S422 and D6S1610. This study shows that data from even a small number of families can be successfully used to map a gene for a genetically heterogeneous disorder.  相似文献   

10.
CDKN4/p27Kip1 is a cyclin-dependent kinase (Cdk) inhibitor implicated in G1 phase arrest, which negatively regulates G1 phase progression in response to TGF, and might represent a tumor suppressor gene. We report here the chromosomal assignment of the human CDKN4 gene to chromosome 12p12.3 in close proximity to highly polymorphic microsatellite markers.  相似文献   

11.
Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.  相似文献   

12.
The chromosomal location of the murine macrophage colony-stimulating factor (Csfm) gene was determined by interspecific backcross analysis. We mapped Csfm to mouse chromosome 3, 2.5 cM distal to Ngfb and Nras and 1.3 cM proximal to Amy-2. CSFM maps to human chromosome 5q, while AMY2, NGFB, and NRAS map to human chromosome 1p. The chromosomal location of Csfm thus disrupts a previously identified conserved linkage group between mouse chromosome 3 and human chromosome 1. The location of Csfm also identifies yet another mouse chromosome that shares synteny with human chromosome 5q, a region involved in several different types of myeloid disease.  相似文献   

13.
Summary The three major troponin I isoforms are encoded by separate genes and are expressed in a muscle-type-specific manner. A human cardiac troponin I cDNA has recently been isolated and used to establish the genomic location of the cardiac troponin I gene locus (designated TNNC1). By somatic cell hybrid analysis, the locus for TNNC1 maps to human chromosome 19 and can be localised to the region p13.2–q13.2  相似文献   

14.
15.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

16.
In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families.  相似文献   

17.
Clones encoding the entire coding and 3' untranslated region of the human type I tumor necrosis factor receptor (p60) gene (TNFR1) were isolated by hybridization using probes derived from TNFR-1 cDNA. The gene was characterized by restriction mapping. DNA blot analysis and sequence analysis. The coding region and the 3' untranslated region are distributed over 10 exons. Each of the four repeats, comprising the extracellular ligand binding domain and characterizing a receptor superfamily, is interrupted by an intron. However, the intron-exon structure is not conserved in the nerve growth factor receptor gene, another member of this superfamily. By PCR analysis of human-mouse somatic cell hybrids and in situ hybridization using biotinylated genomic TNFR1 DNA, we localized the gene to human chromosomal band 12p13. This corresponds to the homologous murine gene localized at the distal region of mouse chromosome 6.  相似文献   

18.
Summary A cDNA probe corresponding to mRNA encoding human uroporphyrinogen decarboxylase (URO-D) was used to determine the chromosomal localization of the URO-D gene in the human genome. In agreement with previous studies, we have found that the locus for URO-D is located on chromosome 1 in hybrid cell mapping panels. The use of in sity hybridization allowed us to map the URO-D locus to band 1p34.Part of this work was presented as an abstract entitled Localization of the uroporphyrinogen decarboxylase gene to 1p34 band, by in situ hybridization, by M. G. Mattei, A. Dubart, D. Beaupain, M. Goossens, and J. F. Mattei, for a poster presentation at the 8th International Conference on Human Gene Mapping, Helsinki, August 4–10, 1985  相似文献   

19.
The h-PRL-1 gene codes for a new phosphotyrosine phosphatase that may play an important role in the control of basic cellular processes such as cell growth and proliferation. Using the cDNA of the h-PRL-1 gene as a probe, we examined a somatic mouse and hamster × human hybrid panel and found that chromosomes 1, 17 and 11 harbor sequences homologous to h-PRL-1. By in situ hybridization of metaphase spreads, subchromosomal localizations were determined at bands 1p35–p34, 17q12– q21 and 11q24–q25; in addition, a faint signal was detected at 12q24. The chromosomal assignment of the genes homologous to h-PRL-1 will help the investigation of its possible involvement in human diseases involving genetic alteration at these chromosomal regions. Received: 12 June 1996 / Revised: 27 July 1996  相似文献   

20.
H M Chin  C A Kozak  H L Kim  B Mock  O W McBride 《Genomics》1991,11(4):914-919
A rat brain cDNA probe was used to localize a gene encoding the alpha 1 subunit of neuronal dihydropyridine-sensitive L-type calcium channels in the mouse and human genomes. Hybridization of the probe to Southern blots made with DNAs from a Chinese hamster x mouse somatic cell hybrid panel indicated that this gene maps to mouse chromosome 14 (Chr 14). Southern blot analysis of an intersubspecies cross demonstrated that the calcium channel alpha 1 subunit gene, termed Cchl1a2, can be positioned 7.5 cM proximal to Np-1. Similarly, segregation among human X rodent somatic cell hybrids indicated that CCHL1A2 maps to human chromosome 3. These assignments are consistent with a region of linkage homology between human chromosome 3p and a proximal region of mouse Chr 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号