共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Pablo D. Cerdán Marcelo J. Yanovsky F. Carolina Reymundo Akira Nagatani Roberto J. Staneloni Garry C. Whitelam Jorge J. Casal 《The Plant journal : for cell and molecular biology》1999,18(5):499-507
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1. 相似文献
3.
In Arabidopsis, phytochrome A (phyA) is the major photoreceptor both for high irradiance responses to far-red light and broad spectrum very low fluence responses, but little is known of its signaling pathway(s). rsf1 was isolated as a recessive mutant with reduced sensitivity to far-red inhibition of hypocotyl elongation. At the seedling stage rsf1 mutants are affected, to various degrees, in all described phyA-mediated responses. However, in adult rsf1 plants, the photoperiodic flowering response is normal. The rsf1 mutant has wild-type levels of phyA suggesting that RSF1 is required for phyA signaling rather than phyA stability or biosynthesis. RSF1 thus appears to be a major phyA signaling component in seedlings, but not in adult, Arabidopsis plants. 相似文献
4.
5.
6.
The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems. 相似文献
7.
8.
9.
The dynamic behavior of phytochrome A (phyA) in seedlings of the model plant Arabidopsis was examined by in vivo spectroscopy and by western and northern blotting. Rapid accumulation of phyA was observed, reaching a steady state after 3 d. Both red and far-red light initiated a rapid destruction of the far-red-light-absorbing form of phytochrome (Pfr); the apparent half-life was only 4-fold longer in far-red than in red light. Furthermore, the Pfr-induced destruction of the red-light-absorbing form of phytochrome (Pr) of phyA occurred in darkness with a rate identical to that of Pfr destruction. A 2-fold decrease in mRNA abundance was observed after irradiation, irrespective of the applied light quality. However, reaccumulation occurred rapidly after far-red but slowly after red irradiation, indicating different modes of regulation of phytochrome expression after light-dark transitions depending on the light quality of the preceding irradiation. The wavelength dependency of the destruction rates was distinct from that of mustard, a close relative of Arabidopsis, and was explained on the basis of Pfr-induced Pr destruction and a simple kinetic two-step model. No dark reversion was detectable in the destruction kinetics after a red pulse. From these data we conclude that Arabidopsis phyA differs significantly in several aspects from other dicot phytochromes. 相似文献
10.
Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis 下载免费PDF全文
To study negative interactions between phytochromes, phytochrome B (phyB) overexpressor lines, the mutants phyA-201, phyB-4, phyB-5, phyD-1, phyA-201 phyB-5, phyA-201 phyD-1, and phyB-5 phyD-1 of Arabidopsis were used. Endogenous phyB, but not phytochrome D (phyD), partly suppressed phytochrome A (phyA)-dependent inhibition of hypocotyl elongation in far-red light (FR). Dichromatic irradiation demonstrated that the negative effect of phyB was largely independent of the photoequilibrium, i.e. far-red light absorbing form of phytochrome formation. Moreover, phyB-4, a mutant impaired in signal transduction, did not show a loss of inhibition of phyA by phyB. Overexpression of phyB, conversely, resulted in an enhanced inhibition of phyA function, even in the absence of supplementary carbohydrates. However, overexpression of a mutated phyB, which cannot incorporate the chromophore, had no detectable effect on phyA action. In addition to seedling growth, accumulation of anthocyanins in FR, another manifestation of the high irradiance response, was strongly influenced by phyB holoprotein. Induction of seed germination by FR, a very low fluence response, was suppressed by both endogenous phyB and phyD. In conclusion, we show that both classical response modes of phyA, high irradiance response, and very low fluence response are subject to an inhibitory action of phyB-like phytochromes. Possible mechanisms of the negative interference are discussed. 相似文献
11.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their
light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile,
phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear
to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light,
as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome
B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported
that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants.
Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in
phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark
of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in
the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red
ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings.
Received: 12 July 1998 / Accepted: 13 August 1998 相似文献
12.
Allen T Koustenis A Theodorou G Somers DE Kay SA Whitelam GC Devlin PF 《The Plant cell》2006,18(10):2506-2516
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light-induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime. 相似文献
13.
van Zanten M Tessadori F McLoughlin F Smith R Millenaar FF van Driel R Voesenek LA Peeters AJ Fransz P 《Plant physiology》2010,154(4):1686-1696
Development and acclimation processes to the environment are associated with large-scale changes in chromatin compaction in Arabidopsis (Arabidopsis thaliana). Here, we studied the effects of light signals on chromatin organization. A decrease in light intensity induces a large-scale reduction in chromatin compaction. This low light response is reversible and shows strong natural genetic variation. Moreover, the degree of chromatin compaction is affected by light quality signals relevant for natural canopy shade. The photoreceptor CRYPTOCHROME2 appears a general positive regulator of low light-induced chromatin decompaction. Phytochrome B also controls light-induced chromatin organization, but its effect appears to be dependent on the genetic background. We present a model in which chromatin compaction is regulated by the light environment via CRYPTOCHROME2 protein abundance, which is controlled by phytochrome B action. 相似文献
14.
Jorge J. Casal 《Planta》1995,196(1):23-29
Etiolated seedlings of the wild-type (WT) and of the phyB-1 mutant of Arabidopsis thaliana (L.) Heynh. were exposed to red-light (R) and far-red light (FR) treatments to characterize the action of phytochrome B on hypocotyl extension growth. A single R or FR pulse had no detectable effects on hypocotyl growth. After 24-h pre-treatment with continuous FR (FRc) a single R, compared to FR pulse inhibited (more than 70%) subsequent hypocotyl growth in the WT but not in the phyB-1 mutant. This effect of FRc was fluence-rate dependent and more efficient than continuous R (Rc) or hourly FR pulses of equal total fluence. Hypocotyl growth inhibition by Rc was larger in WT than phyB-1 seedlings when chlorophyll screening was reduced either by using broadband Rc (maximum emission 610 nm) or by using narrow-band Rc (658 nm) over short periods (24 h) or with seedlings bleached with Norflurazon. Hourly R or R + FR pulses had similar effects in WT and phyB-1 mutant etiolated seedlings. It is concluded that phytochrome B is not the only photoreceptor of Rc and that the action of phytochrome B is enhanced by a FRc high-irradiance reaction. Complementary experiments with the phyA-201 mutant indicate that this promotion of a phytochrome B-mediated response occurs via co-action with phytochrome A.Abbreviations D
darkness
- FR
far-red light
- FRc
continuous FR
- Pfr
FR-absorbing form of phytochrome
- HIR
high-irradiance reaction
- Pfr/P
proportion of phytochrome as Pfr
- phyA
phytochrome A
- phyB
phytochrome B
- R
red light
- Rc
continuous R
- WT
wild-type
I thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands) and Professor J. Chory (Salk Institute, Calif., USA) for their kind provision of the original WT and phyB-1 and phyA-201 seed, respectively. This work was financially supported by grants PID and PID-BID from CONICET, AG 040 from Universidad de Buenos Aires and A 12830/1-000019 from Fundación Antorchas. 相似文献
15.
Short TW 《Plant physiology》1999,119(4):1497-1506
Overexpression of phytochrome B (phyB) in Arabidopsis has previously been demonstrated to result in dominant negative interference of phytochrome A (phyA)-mediated hypocotyl growth inhibition in far-red (FR) light. This phenomenon has been examined further in this study and has been found to be dependent on the FR fluence rate and on the availability of metabolizable sugars in the growth medium. Poorly metabolized sugars capable of activating the putative hexokinase sensory function were not effective in eliciting the phytochrome interference response. Overexpressed phyB lacking the chromophore-binding site was also effective at inhibiting the phyA response, especially at higher fluence rates of FR. Overexpressed phyB produces the dominant negative phenotype without any apparent effect on phyA abundance or degradation. It is possible that phyA and phyB interact with a common reaction partner but that either the energy state of the cell or a separate sugar-signaling mechanism modulates the phytochrome-signaling interactions. 相似文献
16.
17.
The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway 总被引:6,自引:0,他引:6
Margaret Ahmad Anthony R. Cashmore 《The Plant journal : for cell and molecular biology》1996,10(6):1103-1110
In a screen for early-flowering mutants, a number of mutants that were early flowering under both short and long days were isolated. One such mutant, pef1, was selectively insensitive to both red and far-red light in the inhibition of hypocotyl elongation response; a classic phytochrome phenotype mediated by both PHYA and PHYB. The pef1 mutant seedlings could not be phenotypically rescued by biliverdin, a precursor of the phytochrome chromophore, nor did they fail to complement any previously identified elongated hypocotyl (hy) mutants. Difference spectra and Western blot analysis showed normal concentrations of PHYA photoreceptor apoprotein, which appeared photochemically active. It was concluded that the pef1 mutant is defective in both PHYA- and PHYB- mediated signaling pathways, and may represent a lesion in an early step of the phytochrome signal transduction pathway. Additional pef mutants deficient specifically in PHYB-mediated responses were also identified by this screen. 相似文献
18.
19.