首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage caused by southern green stink bug, Nezara viridula (L.), to macadamia nuts, Macadamia integrifolia Maiden & Betche, is normally determined after nuts are harvested and processed, which may be many months after damage occurred in the field. We developed a method using ruthenium red dye to stain stink bug feeding probes and indirectly assess feeding activity in macadamia nuts. By using the staining method, feeding probes were easily detected on the husk, shell, and kernel. Husk probing was highly correlated (0.80-0.90) with feeding and damage to the kernel. Failure rate to detect kernel damage from stained husk probes was generally <6%. The staining method was equally effective for immature and mature nuts; therefore, N. viridula feeding activity can be monitored throughout the season to evaluate pest management tactics and forecast outbreak populations.  相似文献   

2.
Abstract Seasonal abundances of the pentatomids Nezara viridula , Plautia affinis and Glaucias amyoti were monitored on the introduced weed, broadleaf privet, Ligustrum lucidum from January 1998 to July 2000 at Moree, New South Wales, Australia. All developmental stages (eggs, nymphal instars and adults) of N. viridula , P. affinis and G. amyoti were recovered from privet. For all species, adult and nymphal densities peaked from February to May, coincident with privet fruiting. Nymphs of each species successfully developed when fed L. lucidum berries in the laboratory. The importance of L. lucidum as a host is discussed in relation to its role in maintaining populations of pentatomid pest species and in particular as a late-season host prior to overwintering.  相似文献   

3.
Susceptibility of the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae), and its endoparasitoid Trichopoda pennipes (F.) (Diptera: Tachinidae) to acetamiprid, cyfluthrin, dicrotophos, indoxacarb, oxamyl, and thiamethoxam was compared in residual and oral toxicity tests. In the residual toxicity test, cyfluthrin, dicrotophos, and oxamyl were highly toxic to N. viridula. Thiamethoxam was moderately toxic to these insects. Each of the four insecticides was highly toxic to T. pennipes after prolonged tarsal contact with dried residues of these chemicals. In the oral toxicity test, where N. viridula fed on food covered with insecticide residues, none of the insecticides were toxic to adults of this stink bug, but acetamiprid, dicrotophos, and thiamethoxam were moderately toxic to the nymphs. In the oral toxicity test, where N. viridula fed on a gel-food containing insecticides, cyfluthrin, dicrotophos, oxamyl, and thiamethoxam were highly toxic to this stink bug. In an oral toxicity test using contaminated sugar water, all of the insecticides were highly toxic to T. pennipes. Because insecticides were as toxic, or more toxic, to T. pennipes than to N. viridula, it is extremely important to conserve this parasitoid by applying these insecticides for control of southern green stink bugs only when the pest reaches economic threshold.  相似文献   

4.
The genus Diabrotica includes a large number of pest species, including some of the most important crop pests of the Americas. The parasitoid Centistes gasseni Shaw is the first braconid to be described parasitizing Diabrotica in South America, and high natural infestations are reported. Field and experimental observations on the host range, distribution and biology of this parasitoid are described. Centistes gasseniwas collected in southern Brazil, eastern Paraguay and northeastern Argentina, in a region comprising humid lowlands and highlands, and cool temperate to warm subtropical climates, with regular rainfall in excess of 1300 mm. Three Diabroticaspecies, D. limitata (Sahlberg), D. speciosa (Germar) and D. viridula (Fabricius) were found to host the parasitoid, with mean percent parasitism of 5.4, 2.0 and 1.0%, respectively. Diabrotica speciosa and D. viridula are the two most important pest Diabroticaspecies in South America. Laboratory experiments with field-collected beetles and parasitoid cocoons indicated that C. gasseni overwinters in adult host beetles, remaining dormant in its live host below developmental temperatures. A potential distribution of C. gasseni in North America is proposed based on its known climatic range and the distribution of the main pest species of adult overwintering North American Diabrotica.  相似文献   

5.
Laboratory studies were conducted to compare duration of feeding and superficial and in-depth damage to soybean (Glycine max) seeds by the Southern green stink bug, Nezara viridula (L.), the Neotropical brown stink bug, Euschistus heros (F.), the red-banded stink bug, Piezodorus guildinii (Westwood), and the green-belly stink bug, Dichelops melacanthus (Dallas). Results indicated that feeding time was significantly longer for N. viridula (≈ 133 min) compared to E. heros and D. melacanthus (≈ 70 min), but not different from P. guildinii (≈ 103 min). There was a positive correlation between feeding time and the resulting damage for E. heros, N. viridula and P. guildinii (R2 > 0.80, P < 0.0001), but not for D. melacanthus (R2 = 0.1011, P = 0.1493). The deepest seed damage (2.0 mm) was made by P. guildinii and the shallowest (0.5 mm) by D. melacanthus. The depth of the seed damage by E. heros and N. viridula (0.8, 1.2 mm, respectively) was intermediate in comparison to the other species studied. Feeding damage to the seed endosperm caused variable cell disruption and protein body dissolution, particularly when P. guildinii fed on seeds, suggesting that the deleterious action of salivary enzymes was greater for this bug compared to the others.  相似文献   

6.
Distribution patterns and numerical variability of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and its predator Neoseiulus aff. paspalivorus DeLeon (Phytoseiidae) on the nuts of 3- to 7-month-old bunches of coconut palms were studied at two sites in Sri Lanka. At the two sites, coconut mites were present on 88 and 75% of the nuts but no more than three-quarters of those nuts showed damage symptoms. N. aff. paspalivorus was found more on mature nuts than on immature nuts. Spatial and temporal distribution of coconut mites and predatory mites differed significantly. The mean number of coconut mites per nut increased until 5-month-old bunches and declined thereafter. The densities of predatory mites followed a similar trend but peaked 1 month later. Variability in the numbers of mites among palms and bunches of the same age was great, but was relatively low on 6-month-old bunches. The results indicate that assessment of infestation levels by damage symptoms alone is not reliable. Sampling of coconut and/or predatory mite numbers could be improved by using several nuts of 6-month-old bunches. The effect of predatory mites on coconut mites over time suggests that N. aff. paspalivorus could be a prospective biological control agent of A. guerreronis.  相似文献   

7.
《Biological Control》2010,52(3):388-394
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   

8.
While sustainable agriculture relies on natural pest control, we lack insights into the relative importance of bottom-up and top-down factors on pest levels, especially along broad environmental and management gradients. To this aim, we focused on bottom-up and top-down control of herbivore damage in sixty sites in the centre of origin of Arabica coffee in southwestern Ethiopia, where coffee grows along a management gradient ranging from little or no management in the natural forest to commercial plantations. More specifically, we examined how canopy cover, percentage of surrounding forest and management intensity affected caffeine and chlorogenic acid concentration (bottom-up process) and attack of dummy caterpillars by ants and birds (top-down process), and how these in turn affected pest levels. Caffeine and chlorogenic acid concentrations were negatively related to canopy cover, while ant attack rate was positively related to canopy cover. Both ant and bird attack rate increased with the percentage of surrounding forest. Yet, secondary chemistry and caterpillar attack rates were unrelated to herbivory, and herbivory was only directly and positively affected by management intensity. Our study highlights that canopy cover can have contrasting effects on plant defence and predation, and that changes in bottom-up and top-down factors do – unlike often assumed – not necessarily translate into reduced pest levels. Instead, direct effects of management on pest levels may be more important than bottom-up or top-down mediated effects.  相似文献   

9.
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   

10.
* Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. * Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. * Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. * Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.  相似文献   

11.
Experiments were conducted in an environmental growth chamber to determine the movement and feeding preferences of Nezara viridula (L.) and Euschistus serous (Say) on individual cotton plants. Fifth instars were caged by species on a single cotton plant (FM 9063 B2F) containing four discrete boll sizes ranging from 1.1 to 3.0 cm in diameter over a period of 5 d per replication. Two digital video cameras were simultaneously focused on each of the four bolls per plant to visually confirm stink bug resting and movement. During the study, a total of 4,080 h of video footage was recorded and analyzed. Results showed that N. viridula and E. serous did not prefer the exact same boll sizes. In a trial with eight stink bugs per plant, N. viridula spent more time on the three larger boll classes, 1.6-2.0, 2.1-2.5, and 2.6-3.0 cm. In a separate trial with one stink bug per plant, N. viridula spent more time on the larger boll classes while E. serous exhibited the strongest preference for 1.1-1.5 and 2.1-2.5 cm bolls. N. viridula moved more often than E. serous and both species moved more often during photophase compared with scotophase. Regardless of species or number of bugs released, bolls in the smallest boll size class fell off the plant about 3 d after the bugs were released. These results confirm that scouts who are estimating stink bug damage should select bolls in the 2.1-2.5 cm diameter boll size class.  相似文献   

12.
Changes in fruit characteristics associated with ripening increase the vulnerability of crops to insect depredation, making it difficult for growers to protect cultivated fruits from pest injury close to harvest. This study evaluated phenological resistance, the use of cultivars that ripen before or after peak pest activity, for reducing injury to grapes (Vitis spp.) by the green June beetle (GJB) (Cotinis nitida), an obligate feeder on soft, ripe fruits. Accumulation of sugars, softening of berry skins and recruitment of GJB feeding aggregations were monitored on replicated vines of early-, mid- and late-season ripening cultivars that require from 85 to 125 growing days from bloom to harvest. GJB flight peaked in late July and early August coinciding with later stages of veraison of early-season ripening cultivars which recruited numerous GJB feeding aggregations resulting in >95% crop loss. Small (1–2 weeks) phenological differences between mid-season ripening cultivars and peak GJB flight translated to marked differences in injury, whereas cultivars that ripened in mid-August or later, after GJB flight had waned, sustained little or no damage. Trapping experiments confirmed that the tougher berries and low sugar content of less-ripe fruit clusters inhibited beetle feeding and induction of yeast-mediated volatiles responsible for GJB host-location. Implications of these findings for sustainable or organic management of GJB and other near-harvest fruit pests are discussed.  相似文献   

13.
Nezara viridula L. and Euschistus servus (Say) are the predominant species of phytophagous stink bugs on corn, Zea mays L., in Georgia. Oebalus pugnax pugnax (F.) occurs in relatively low numbers, and the predatory stink bug Podisus maculiventris (Say) is commonly found. Limited information is available on natural biological control of these four stink bug species in Georgia corn fields; therefore, a 6-yr study of parasitism and predation of their eggs was initiated in 2003. Naturally occurring stink bug eggs were parasitized by six scelionid species, Trissolcus basalis (Wollaston), T. thyantae Ashmead, T. brochymenae (Ashmead), T. euschisti (Ashmead), Telenomus podisi Ashmead, Telenomus calvus Johnson, and one encyrtid species, Ooencyrtus sp. T. basalis was the most prevalent parasitoid of N. viridula, parasitizing E. servus and P. maculiventris eggs at low levels. T. podisi, the predominant parasitoid species emerging from eggs of E. servus and P. maculiventris, also parasitized O. p. pugnax eggs exclusively and parasitized N. viridula eggs at low levels. T. euschisti and T. thyantae parasitized E. servus egg masses. T. brochymenae parasitized eggs of both E. servus and P. maculiventris. T. calvus parasitized only P. maculiventris eggs. The same species of egg parasitoids that parasitized naturally occurring eggs of N. viridula and E. servus parasitized sentinel eggs of these bugs, except that no T. calvus and Ooencyrtus sp. were obtained from sentinel eggs, and T. thyantae and T. brochymenae emerged from sentinel eggs of N. viridula. Generally, parasitization of an egg mass was either greater than or equal to predation of sentinel eggs of N. viridula and E. servus. However, on some dates in late June and July, predation of sentinel egg masses was numerically approximately twice as high as parasitism. Results indicate stink bug egg parasitoids and predators are significant factors in the natural biological control of stink bugs in corn fields.  相似文献   

14.
We conducted a 2-yr field study on growth and yield compensation in cotton (Gossypium hirsutum L.) after artificial pest damage in Kununurra in NW Australia. The aim was to assess the responses of cotton grown in tropical Australia to simulated Helicoverpa damage early in the season (tip damage) and during fruiting (square removal). In this region, cotton is grown in an inverse temperature regimen to cotton grown in temperate regions, and it is possible that tropical cotton crops exhibit different responses to pest damage (Yeates 2001). To examine this, we imposed manual damage treatments by excising plant tips before squaring (flower bud production) and removing all large squares at 800 degree-days DD, (at base 12 degrees C; early square loss) or 1,200 DD (mid-square loss). We found high levels of tolerance in tropical cotton to simulated pest damage (particularly early square loss) equaling or possibly surpassing the compensatory response of cotton grown in temperate Australia. While yield did not differ between damage and control treatments, the trend suggests an increase in yield resulting from tip damage and early fruit loss. Compared with temperate crops, the delay in maturity caused by damage was minimal, owing to high rates of boll opening (up to 11% d(-1)). Early season tip damage resulted in a significant increase in lateral branch growth that later contributed to a higher fruiting potential. The altered canopy of tip-damaged plants also increased light interception, particularly in the upper canopy. Both of the above factors could confer a greater tolerance to subsequent fruit damage in tipped plants.  相似文献   

15.
ABSTRACT In order to find out the relationship between the leaf quality of R. obtusifolius and the ecology of G. viridula , a series of experiments was carried out. The effects of leaf age on rates of growth of instars of G. viridula showed that the leaf age was closely related to the development of the larvae of G. viridula . Also, the results showed quite clearly that the N concentration of R. obtusifolius leaves have significant effects on the growth rates of G. viridula larvae. It is suggested that C: N ratio of food plant plays an important role in the population dynamics of phytophagous insects. A small increase in leaf N concentration in a nutrient poor habitat will substantially increase the G. viridula population.  相似文献   

16.
Extensive areas of Amazonia undergo selective logging, modifying forest structure and nutrient cycles. Anthropogenic‐accelerated rates of nitrogen (N) turnover could increase N loss and affect regeneration, carbon sequestration and timber production. We quantified leaf area reduction, canopy opening and downed biomass and resultant N flux from reduced impact logging (RIL) activities. We compared canopy reduction, surface soil moisture and nitrate to 8 m depth between logged gaps and intact primary forest to determine if logging activities increase subsoil nitrate. To test long‐term logging effects, we evaluated surface N stocks along a 12‐year postlogging chronosequence. At the harvest rate of 2.6 trees ha?1, total N additions in logging gaps, including leaves and wood from felled crowns (24.8 kg N ha?1) and other killed trees (41.9 kg N ha?1), accounted for over 80% of the total N addition to aboveground necromass from all logging activities (81.9 kg N ha?1). Despite this N turnover by logging, belowground nitrate storage to 8 m depth did not differ between logging gaps and primary forest at the low harvest rate and disturbance intensity of this study. Soil water depletion also did not differ between gaps and primary forest over 1 year, indicating the impact on belowground inorganic N was low. Compared with primary forest, nitrate concentrations to 8 m depth in logging gaps were only significantly higher at 60–100 cm, suggesting some N redistribution beyond the bulk of the fine roots in logging gaps. Extrapolated to the Amazon Basin scale, we provide a conservative estimate that logging damage and bole export under RIL would turn over 0.14 ± 0.07 to 0.23 ± 0.12 Tg N yr?1 based on 1999–2002 selective logging rates. Greater damage during conventional selective logging would cause higher N turnover throughout the Amazon Basin than our results based on RIL.  相似文献   

17.
Recôncavo Baiano is an area favourable for the occurrence of citrus greasy spot (CGS) (Mycosphaerella citri), but there has been no study of this pathosystem in Brazil. This work aimed to characterise the temporal patterns of CGS‐induced defoliation in sweet orange cultivars ‘Bahia’ (Washington Navel) and ‘Pêra’. Temperature, rainfall and relative humidity were recorded, as well as weekly defoliation (fallen leaves/canopy m2 or m3). Considering the mean of fallen leaves per canopy m2, and mean canopy area, the total annual defoliation was estimated to be around 32 000 leaves per plant for ‘Bahia’ and 18 500 for ‘Pêra’ sweet orange. Spectral density analysis showed that defoliation has a 5‐week‐long main cycle for both cultivars. The proportion of symptomatic fallen leaves was never below 0.97. The monthly number of fallen leaves per canopy area was positively correlated with the mean CGS incidence on leaves. Defoliation was significant, resulting in a low leaf density throughout the year. Many defoliation cycles and the very high proportion of symptomatic fallen leaves assure a constant inoculum supply. Based on these results, CGS cannot be considered a minor disease, at least in Recôncavo Baiano.  相似文献   

18.
The persea mite, Oligonychus perseae Tuttle, Baker & Abbatiello (Acari: Tetranychidae), a pest of avocado, was first discovered in Israel in the autumn of 2001. It has since spread to most avocado growing areas in Israel. To establish an economic injury level (EIL), based on the percentage of leaf area damaged (PLAD), we conducted an extensive field study. For three consecutive seasons we created distinct pest infestation levels on the Hass avocado cv., by applying acaricides (spirodiclofen and abamectin) at 50, 100, and 250 mites per leaf levels, along with non‐sprayed controls in a replicated block design. At harvest time we evaluated the level of leaf damage and fruit yields across treatments. In two out of the 3 years, trees sprayed at 50 and 100 mites per leaf levels had similar PLAD values, differing from trees treated at the 250 mites per leaf level and the non‐treated control, the latter pair also being similar. Over the 3 years, mean yield attained at the two higher infestation levels was reduced by 20% in comparison to the mean yields recorded for plots sprayed at the lower thresholds. Accordingly, we suggest that scouts adopt an action threshold (AT) of 50–100 mites per leaf. Future research is needed to refine this AT. Mean annual cumulative mite days (CMDs) of the two higher levels was ca. 13500 ± 700 per leaf. Using the linear regression equation PLAD = 0.0009CMDs + 2.42, describing leaf damage as a function of CMDs, we estimated an EIL of ca. 15 PLAD.  相似文献   

19.
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large‐area (14–158 ha) selective logging sites spanning a 3.5‐year period of forest regeneration and two distinct harvest methods: conventional logging (CL) and reduced‐impact logging (RIL). Our goals were to: (1) determine the spatial characteristics of canopy gap fraction immediately following selective logging in the eastern Amazon; (2) determine the degree and rate of canopy closure in early years following harvest among the major landscape features associated with logging – tree falls, roads, skid trails and log decks; and (3) quantify spatial and temporal differences in canopy opening and closure in high‐ and low‐damage harvests (CL vs. RIL). Across a wide range of harvest intensities (2.6–6.4 felled trees ha?1), the majority of ground damage occurred as skid trails (4–12%), whereas log decks and roads were only a small contributor to the total ground damage (<2%). Despite similar timber harvest intensities, CL resulted in more ground damage than RIL. Neither the number of log decks nor their individual or total area was correlated with the number of trees removed or intensity of tree harvesting (trees ha?1). The area of skids was well correlated with the ground area damaged (m2) per tree felled. In recently logged forest (0.5 years postharvest), gap fractions were highest in log decks (mean RIL=0.83, CL=0.99) and lowest in tree‐fall areas (RIL: 0.26, CL: 0.41). However, the small surface area of log decks made their contribution to the total area‐integrated forest gap fraction minor. In contrast, tree falls accounted for more than two‐thirds of the area disturbed, but the canopy gaps associated with felled trees were much smaller than for log decks, roads and skids. Canopy openings decreased in size with distance from each felled tree crown. At 0.5 years postharvest, the area initially affected by the felling of each tree was approximately 100 m in radius for CL and 50 m for RIL. Initial decreases in gap fraction during the first 1.5 years of regrowth diminished in subsequent years. Throughout the 3.5‐year period of forest recovery, tree‐fall gap fractions remained higher in CL than in RIL treatments, but canopy gap closure rates were higher in CL than in RIL areas. During the observed recovery period, the canopy gap area affected by harvesting decreased in radius around each felled tree from 100 to 40 m in CL, and from 50 to 10 m in RIL. The results suggest that the full spatial and temporal dynamics of canopy gap fraction must be understood and monitored to predict the effects of selective logging on regional energy balance and climate regimes, biogeochemical processes including carbon cycling, and plant and faunal population dynamics. This paper also shows that remote sensing of log decks alone will not provide an accurate assessment of total forest area impacted by selective logging, nor will it be closely correlated to damage levels and canopy gap closure rates.  相似文献   

20.
Summary The rate at which fallen hickory nuts are removed from beneath the parent tree, and the effect on this rate of the seed predatorConotrachelus affinis, was studied in an oak-hickory forest in southeastern Michigan, USA, during a year in which few nuts were produced. The trees responded toConotrachelus, which destroyed half the nut crop, by aborting inviable nuts during the summer. The seed dispersers, mostly gray squirrels, removed fallen nuts rapidly, showing the ability to distinguish viable nuts and remove them preferentially. The number of nuts removed in a week varies directly with the number available, and removal rate increases when many viable nuts are falling. The death of most seeds before dispersal, and the squirrels' efficiency at foraging on nuts and recovering them after burial, imply that successful hickory reproduction takes place only in years of heavy nut production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号