首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response of trunk muscle coactivation to changes in spinal stability   总被引:11,自引:0,他引:11  
The goal of this effort was to assess the neuromuscular response to changes in spinal stability. Biomechanical models suggest that antagonistic co-contraction may be related to stability constraints during lifting exertions. A two-dimensional biomechanical model of spinal equilibrium and stability was developed to predict trunk muscle co-contraction as a function of lifting height and external load. The model predicted antagonistic co-contraction must increase with potential energy of the system even when the external moment was maintained at a constant value. Predicted trends were compared with measured electromyographic (EMG) data recorded during static trunk extension exertions wherein subjects held weighted barbells at specific horizontal and vertical locations relative to the lumbo-sacral spine junction. The task was designed to assure the applied moment was identical during each height condition, thereby changing potential energy without influencing moment. Measured EMG activity in the trunk flexors increased with height of the external load as predicted by the model. Gender difference in spinal stability were also noted. Results empirically demonstrate that the neuromuscular system responds to changes in spinal stability and provide insight into the recruitment of trunk muscle activity.  相似文献   

2.
Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.  相似文献   

3.
Biomechanical optimization models that apply efficiency-based objective functions often underestimate or negate antagonist co-activation. Co-activation assists movement control, joint stabilization and limb stiffness and should be carefully incorporated into models. The purposes of this study were to mathematically describe co-activation relationships between elbow flexors and extensors during isometric exertions at varying intensity levels and postures, and secondly, to apply these co-activation relationships as constraints in an optimization muscle force prediction model of the elbow and assess changes in predictions made while including these constraints. Sixteen individuals performed 72 isometric exertions while holding a load in their right hand. Surface EMG was recorded from elbow flexors and extensors. A co-activation index provided a relative measure of flexor contribution to total activation about the elbow. Parsimonious models of co-activation during flexion and extension exertions were developed and added as constraints to a muscle force prediction model to enforce co-activation. Three different PCSA data sets were used. Elbow co-activation was sensitive to changes in posture and load. During flexion exertions the elbow flexors were activated about 75% MVC (this amount varied according to elbow angle, shoulder flexion and abduction angles, and load). During extension exertions the elbow flexors were activated about 11% MVC (this amount varied according to elbow angle, shoulder flexion angle and load). The larger PCSA values appeared to be more representative of the subject pool. Inclusion of these co-activation constraints improved the model predictions, bringing them closer to the empirically measured activation levels.  相似文献   

4.
Spinal stability is related to both the intrinsic stiffness of active muscle as well as neuromuscular reflex response. However, existing analyses of spinal stability ignore the role of the reflex response, focusing solely on the intrinsic muscle stiffness associated with voluntary activation patterns in the torso musculature. The goal of this study was to empirically characterize the role of reflex components of spinal stability during voluntary trunk extension exertions. Pseudorandom position perturbations of the torso and associated driving forces were recorded in 11 healthy adults. Nonlinear systems-identification analyses of the measured data provided an estimate of total systems dynamics that explained 81% of the movement variability. Proportional intrinsic response was less than zero in more than 60% of the trials, e.g. mean value of P(INT) during the 20% maximum voluntary exertion trunk extension exertions -415+/-354N/m. The negative value indicated that the intrinsic muscle stiffness was not sufficient to stabilize the spine without reflex response. Reflexes accounted for 42% of the total stabilizing trunk stiffness. Both intrinsic and reflex components of stiffness increased significantly with trunk extension effort. Results reveal that reflex dynamics are a necessary component in the stabilizing control of spinal stability.  相似文献   

5.
Lumbo-pelvic stability relies, amongst other factors, on co-contraction of the lumbo-pelvic muscles. However, during submaximal trunk flexion and extension efforts, co-contraction of antagonist muscles is limited. It was predicted that activity of the deeper lumbo-pelvic muscles that are often excluded from analysis (transversus abdominis (TrA) and the deep fascicles of multifidus (DM)), would increase with load in each direction. In eleven healthy subjects, electromyographic activity (EMG) was recorded from eight trunk muscles using surface and fine-wire electrodes. Subjects performed isometric flexion and extension efforts to submaximal loads of 50, 100, 150 and 200 N and a maximal voluntary contraction (MVC). Loading tasks were then repeated in trials in which subjects knew that the load would release at an unpredictable time. Compared to the starting position, EMG of all muscles, except DM, increased during MVC efforts in both directions. During the flexion and extension submaximal tasks, there was no increased co-contraction of antagonist muscles. However, TrA EMG increased in both directions. In the unpredictable trials, EMG of all lumbo-pelvic muscles except TrA was decreased. These findings provide further support for a contribution of TrA to lumbo-pelvic stability. In submaximal tasks, TrA activation may enhance stability as a strategy to improve trunk stiffness without requiring a concurrent increase in activity of the larger torque producing trunk muscles.  相似文献   

6.
Posture-dependent trunk function data are important for appropriate normalization of submaximal trunk exertions, and is also necessary to define a more precise and specific use for strength testing in the prevention and diagnosis of spinal disorders. The aim of the current study was to quantify maximal effort trunk muscle extensor activity and trunk isometric extension torque over a functional range of sagittal standing postures. Twenty healthy, young adult male and female subjects performed isometric extension tasks over a sagittal posture range of -20 degrees extension to +50 degrees flexion, in 10 degrees increments. Erector spinae muscle activity was recorded bilaterally at the level of L3 using surface EMG electrodes. Isometric trunk extension torque was measured using a trunk dynamometer. EMG and trunk torque differed significantly between genders, but there were no differences between male and female subjects when the data were normalized with respect to the upright posture. For the combined male and female population, upright posture normalized L3 EMG activity (EMGn) and trunk extension torque (Tn) increased 1.7-fold and 3.5-fold, respectively, over the 70 degrees range of sagittal postures examined. The ratio (Tn/EMGn) increased two-fold (0.83 to 1.67) from -20 degrees extension to +50 degrees flexion, indicating that the neuromuscular efficiency increases with flexion. Trunk extension torque normalized with respect to the upright posture was linearly and positively correlated (r = 0.59, P < 0.001) to similarly normalized L3 EMG activity. This relatively weak correlation suggests that trunk muscle synergism and/or intrinsic muscle length-tension relationships are also modulated by posture. This study provides data that can be used to estimate trunk extensor muscle function over a broad range of sagittal postures. Our findings indicate that appropriate postural normalization of trunk extensor EMG activity is necessary for studies where submaximal trunk exertions are performed over a range of upright postures.  相似文献   

7.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

8.
The use of electromyographic signals in the modeling of muscle forces and joint loads requires an assumption of the relationship between EMG and muscle force. This relationship has been studied for the trunk musculature and been shown to be predominantly non-linear, with more EMG producing less torque output at higher levels of activation. However, agonist-antagonist muscle co-activation is often substantial during trunk exertions, yet has not been adequately accounted for in determining such relationships. The purpose of this study was to revisit the EMG-moment relationship of the trunk recognizing the additional moment requirements necessitated due to antagonist muscle activity. Eight participants generated a series of isometric ramped trunk flexor and extensor moment contractions. EMG was recorded from 14 torso muscles, and the externally resisted moment was calculated. Agonist muscle moments (either flexor or extensor) were estimated from an anatomically detailed biomechanical model of the spine and fit to: the externally calculated moment alone; the externally calculated moment combined with the antagonist muscle moment. When antagonist activity was ignored, the EMG-moment relationship was found to be non-linear, similar to previous work. However, when accounting for the additional muscle torque generated by the antagonist muscle groups, the relationships became, in three of the four conditions, more linear. Therefore, it was concluded that antagonist muscle co-activation must be included when determining the EMG-moment relationship of trunk muscles and that previous impressions of non-linear EMG-force relationships should be revisited.  相似文献   

9.
This study explored inter-relationships between vertebral fracture, thoracic kyphosis and trunk muscle control in elderly people with osteoporosis. Osteoporotic vertebral fractures are associated with increased risk of further vertebral fractures; but underlying mechanisms remain unclear. Several factors may explain this association, including changes in postural alignment (thoracic kyphosis) and altered trunk muscle contraction patterns. Both factors may increase risk of further fracture because of increased vertebral loading and impaired balance, which may increase falls risk. This study compared postural adjustments in 24 individuals with osteoporosis with and without vertebral fracture and with varying degrees of thoracic kyphosis. Trunk muscle electromyographic activity (EMG) associated with voluntary arm movements was recorded and compared between individuals with and without vertebral fracture, and between those with low and high thoracic kyphosis. Overall, elderly participants in the study demonstrated co-contraction of the trunk flexor and extensor muscles during forwards arm movements, but those with vertebral fractures demonstrated a more pronounced co-contraction than those without fracture. Individuals with high thoracic kyphosis demonstrated more pronounced alternating flexor and extensor EMG bursts than those with less kyphosis. Co-contraction of trunk flexor and extensor muscles in older individuals contrasts the alternating bursts of antagonist muscle activity in previous studies of young individuals. This may have several consequences, including altered balance efficacy and the potential for increased compressive loads through the spine. Both of these outcomes may have consequences in a population with fragile vertebrae who are susceptible to fracture.  相似文献   

10.
Normalization of muscle activity has been commonly used to determine the amount of force exerted by a muscle. The most widely used reference point for normalization is the maximum voluntary contraction (MVC). However, MVCs are often subjective, and potentially limited by sensation of pain in injured individuals. The objective of the current study was to develop a normalization technique that predicts an electromyographic (EMG) reference point from sub-maximal exertions. Regression equations predicting maximum exerted trunk moments were developed from anthropometric measurements of 120 subjects. In addition, 20 subjects performed sub-maximal and maximal exertions to determine the necessary characteristic exertions needed for normalization purposes. For most of the trunk muscles, a highly linear relationship was found between EMG muscle activity and trunk moment exerted. This analysis determined that an EMG-moment reference point can be obtained via a set of sub-maximal exertions in combination with a predicted maximal exertion (expected maximum contraction or EMC) based upon anthropometric measurements. This normalization technique overcomes the limitations of the subjective nature for the MVC method providing a viable assessment method of individuals with a low back injury or those unwilling to exert an MVC as well as could be extended to other joints/muscles.  相似文献   

11.
The problem with normalizing EMG data from patients with painful symptoms (e.g., low back pain) is that such patients may be unwilling or unable to perform maximum exertions. Furthermore, the normalization to a reference signal, obtained from a maximal or sub-maximal task, tends to mask differences that might exist as a result of pathology. Therefore, we presented a novel method (GAIN method) for normalizing trunk EMG data that overcomes both problems. The GAIN method does not require maximal exertions (MVC) and tends to preserve distinct features in the muscle recruitment patterns for various tasks. Ten healthy subjects performed various isometric trunk exertions, while EMG data from 10 muscles were recorded and later normalized using the GAIN and MVC methods. The MVC method resulted in smaller variation between subjects when tasks were executed at the three relative force levels (10%, 20%, and 30% MVC), while the GAIN method resulted in smaller variation between subjects when the tasks were executed at the three absolute force levels (50 N, 100 N, and 145 N). This outcome implies that the MVC method provides a relative measure of muscle effort, while the GAIN-normalized data gives an estimate of the absolute muscle force. Therefore, the GAIN-normalized data tends to preserve the differences between subjects in the way they recruit their muscles to execute various tasks, while the MVC-normalized data will tend to suppress such differences. The appropriate choice of the EMG normalization method will depend on the specific question that an experimenter is attempting to answer.  相似文献   

12.
Cyclic trunk flexion/extension is known to be a risk factor for low back pain or disorders. Changes in the in vivo low back musculature associated with cyclic flexion/extension have not been adequately examined. The purpose of this study was to investigate the effects of cyclic flexion/extension on muscle activity of the low back extensors by quantifying changes in activation timing and mean amplitude of electromyography (EMG). Trunk flexion angle and EMG were recorded during 30 cyclic flexion/extension movements over a 5 min period, and during isometric extension performed before and after the 5 min period. Mean EMG in isometric extension increased (30% increase in average) significantly after cyclic flexion/extension, confirming a transfer of extension moment from viscoelastic passive tissues to the extensor muscles in isometric extension. However, in the extension phase of cyclic flexion/extension, a significant delay in the re-activation and a decrease in the mean amplitude of EMG were observed. The results of this study, together with findings in previous research, suggest that the biomechanical effects and potential risk associated with cyclic flexion/extension may be sensitive to the task demands. Further research is needed to investigate how different moment generating components function together to compensate for the loss of tissue stiffness under varying task conditions.  相似文献   

13.
Biomechanical stability of the lumbar spine is an important factor in the etiology and control of low-back disorders. A principle component of biomechanical stability is the musculoskeletal stiffening generated by preparatory muscle coactivation. The goal of this investigation was to quantify preparatory behavior, evaluating trunk muscle activity immediately prior to sudden trunk flexion loading during static extension tasks compared to activity observed when subjects were informed no sudden load would occur. Coactive excitation was also examined as a function of fatigue and gender. Results demonstrated increased extensor muscle and flexor muscle coactivation following static fatiguing exertions, potentially compensating for reduced trunk stiffness. Female subjects produced greater flexor antagonism than in the males. No difference in the preparatory coactive muscle recruitment patterns were observed when subjects were expecting a sudden flexion load compared to recruitment patterns observed in similar static postures when subjects were informed no sudden load would be applied. This indicates the neuromuscular system relies greatly on response characteristics for the maintenance of stability in dynamic loading conditions.  相似文献   

14.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

15.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

16.
Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects’ maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces.  相似文献   

17.
Accurately describing trunk muscle coactivation is fundamental to quantifying the spine reaction forces that occur during lifting tasks and has been the focus of a great deal of research in the spine biomechanics literature. One limitation of previous approaches has been a lack of consideration given to the variability in these coactivation strategies. The research presented in this paper is an empirical approach to quantifying and modeling trunk muscle coactivation using simulation input modeling techniques. Electromyographic (EMG) data were collected from 28 human subjects as they performed controlled trunk extension exertions. These exertions included isokinetic (10 and 45°/s) and constant acceleration (50°/s/s) trunk extensions in symmetric and asymmetric (30°) postures at two levels of trunk extension moment (30 and 80 Nm). The EMG data were collected from the right and left pairs of the erector spinae, latissimus dorsi, rectus abdominis, external obliques and internal obliques. Each subject performed nine repetitions of each combination of independent variables. The data collected during these trials were used to develop marginal distributions of trunk muscle activity as well as a 10×10 correlation matrix that described how the muscles cooperated to produce these extension torques. These elements were then combined to generate multivariate distributions describing the coactivation of the trunk musculature. An analysis of these distributions revealed that increases in extension moment, extension velocity and sagittal flexion angle created increases in both the mean and the variance of the distributions of the muscular response, while increases in the rate of trunk extension acceleration decreased both the mean and variance of the distributions of activity across all muscles considered. Increases in trunk asymmetry created a decrease in mean of the ipsi–lateral erector spinae and an increase in the mean of all other muscles considered, but there was little change in the variance of these distributions as a function of asymmetry.  相似文献   

18.
Antagonistic muscle pairs cannot be fully activated simultaneously, even with maximal effort, under conditions of voluntary co-contraction, and their muscular activity levels are always below those during agonist contraction with maximal voluntary effort (MVE). Whether the muscular activity level during the task has trainability remains unclear. The present study examined this issue by comparing the muscular activity level during maximal voluntary co-contraction for highly experienced bodybuilders, who frequently perform voluntary co-contraction in their training programs, with that for untrained individuals (nonathletes). The electromyograms (EMGs) of biceps brachii and triceps brachii muscles during maximal voluntary co-contraction of elbow flexors and extensors were recorded in 11 male bodybuilders and 10 nonathletes, and normalized to the values obtained during the MVE of agonist contraction for each of the corresponding muscles (% EMGMVE). The involuntary coactivation level in antagonist muscle during the MVE of agonist contraction was also calculated. In both muscles, % EMGMVE values during the co-contraction task for bodybuilders were significantly higher (P<0.01) than those for nonathletes (biceps brachii: 66±14% in bodybuilders vs. 46±13% in nonathletes, triceps brachii: 74±16% vs. 57±9%). There was a significant positive correlation between a length of bodybuilding experience and muscular activity level during the co-contraction task (r = 0.653, P = 0.03). Involuntary antagonist coactivation level during MVE of agonist contraction was not different between the two groups. The current result indicates that long-term participation in voluntary co-contraction training progressively enhances muscular activity during maximal voluntary co-contraction.  相似文献   

19.
20.
Exercise is one of the few effective treatments for LBP. Although exercise is often based on the premise of reduced spinal stiffness, trunk muscle adaptation may increase stiffness. This study developed and validated a method to assess trunk stiffness and damping, and tested these parameters in 14 people with recurring LBP and 17 pain-free individuals. Effective trunk stiffness, mass and damping were estimated with the trunk modeled as a linear second-order system following trunk perturbation. Equal weights (12–15% body weight) were attached to the front and back of the trunk via pulleys such that the trunk could move freely and no muscle activity was required to hold the weights. The trunk was perturbed by the unexpected release of one of the weights. Trunk kinematics and cable force were used to estimate system properties. Reliability was assessed in 10 subjects. Trunk stiffness was greater in recurrent LBP patients (forward perturbation only), but damping was lower (both directions) than healthy controls. Estimates were reliable and validated by accurately estimated mass. Contrary to clinical belief, trunk stiffness was increased, not reduced, in recurrent LBP, most likely due to augmented trunk muscle activity and changes in reflex control of trunk muscles. Although increased stiffness may aid in the protection of spinal structures, this may have long-term consequences for spinal health and LBP recurrence due to compromised trunk dynamics (decreased damping).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号