首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the properties of the epithelial layer of the dorsal marginal zone (DMZ) of the Xenopus laevis early gastrula and found that it has inductive properties similar to those of the entire Spemann organizer. When grafts of the epithelial layer of the DMZ of early gastrulae labelled with fluorescein dextran were transplanted to the ventral sides of unlabelled host embryos, they induced secondary axes composed of notochord, somites and posterior neural tube. The organizer epithelium rescued embryos ventralized by UV irradiation, inducing notochord, somites and posterior neural tube in these embryos, while over 90% of ventralized controls showed no such structures. Combinations of organizer epithelium and ventral marginal zone (VMZ) in explants of the early gastrula resulted in convergence, extension and differentiation of dorsal mesodermal tissues, whereas similar recombinants of nonorganizer epithelium and the VMZ did none of these things. In all cases, the axial structures forming in response to epithelial grafts were composed of labelled graft and unlabelled host cells, indicating an induction by the organizer epithelium of dorsal, axial morphogenesis and tissue differentiation among mesodermal cells that otherwise showed non-axial development. Serial sectioning and scanning electron microscopy of control grafts shows that the epithelial organizer effect occurs in the absence of contaminating deep cells adhering to the epithelial grafts. However, labelled organizer epithelium grafted to the superficial cell layer contributed cells to deep mesodermal tissues, and organizer epithelium developed into mesodermal tissues when deliberately grafted into the deep region. This shows that these prospective endodermal epithelial cells are able to contribute to mesodermal, mesenchymal tissues when they move or are moved into the deep environment. These results suggest that in normal development, the endodermal epithelium may influence some aspects of the cell motility underlying the mediolateral intercalation (see Shih, J. and Keller, R. (1992) Development 116, 901-914), as well as the tissue differentiation of mesodermal cells. These results have implications for the analysis of mesoderm induction and for analysis of variations in the differentiation and morphogenetic function of the marginal zone in different species of amphibians.  相似文献   

2.
3.
Horseradish peroxidase (HRP) was used as an intracellular lineage tracer in two experiments designed to reveal the sites of origin of cells that formed the duplicate embryo which developed in relation to an organizer grafted in the ventral marginal zone (VMZ) of Xenopus laevis embryos. In the first experiment a dorsal blastoporal lip fully labeled with HRP was grafted in the VMZ of an unlabeled embryo at the beginning of gastrulation. This resulted in development of a second embryo in which labeled cells, of graft origin, formed the notochord, and parts of the somites, endoderm, and neural tube. The second experiment was designed to show the sites of origin of the host's cells that formed parts of the induced embryo. HRP was injected into individual blastomeres in a series of Xenopus embryos at the 32-cell stage and each embryo received an unlabeled organizer graft in the VMZ at the beginning of gastrulation. In these embryos the lineages that contributed to the host's primary neural tube did not contribute any cells to the induced neural tube. All the cells in the induced neural tube which originated from the host were descendants of ventral blastomeres that did not contribute to the neural tube normally. This shows that the second neural tube is formed as a result of the action of the organizer on cells in its immediate vicinity which would not normally have entered neural pathways of differentiation.  相似文献   

4.
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that pregastrular movements change the tissue architecture of the DMZ at earlier stages and in a different fashion than previously appreciated. Beginning at stage 9, epiboly of the animal cap moves tissue into the dorsal but not into the ventral marginal zone, resulting in an asymmetry between the dorsal and the ventral sides. Time-lapse imaging of labeled blastomeres shows that the animal cap tissue moves into the superficial DMZ overlying the deeper mesendoderm of the DMZ. The shearing of superficial tissue over the deeper mesendoderm creates the radial/vertical arrangement of ectoderm outside of mesendoderm within the DMZ, which is independent of involution and prior to the formation of the dorsal blastoporal lip. This tilting of the DMZ is distinct from, but occurs synchronously with, the vegetal rotation of the vegetal cell mass [R., Winklbauer, M., Schürfeld (1999). "Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus." Development. 126, 3703-3713.]. We present a revised model of gastrulation movements in Xenopus laevis.  相似文献   

5.
The isolated upper marginal zone from the initial stage ofCynops gastrulation is not yet determined to form the dorsal axis mesoderm: notochord and muscle. In this experiment, we will indicate where the dorsal mesoderm-inducing activity is localized in the very early gastrula, and what is an important event for specification of the dorsal axis mesoderm during gastrulation. Recombination experiments showed that dorsal mesoderm-inducing activity was localized definitively in the endodermal epithelium (EE) of the lower marginal zone, with a dorso-ventral gradient; and the EE itself differentiated into endodermal tissues, mainly pharyngeal endoderm. Nevertheless, when dorsal EE alone was transplanted into the ventral region, a secondary axis with dorsal mesoderm was barely formed. However, when dorsal EE was transplanted with the bottle cells which by themselves were incapable of mesoderm induction, a second axis with well-developed dorsal mesoderm was observed. When the animal half with the lower marginal zone was rotated 180° and recombined with the vegetal half, most of the rotated embryos formed only one dorsal axis at the primary blastopore side. The present results suggest that there are at least two essential processes in dorsal axis formation: mesoderm induction of the upper marginal zone by endodermal epithelium of the lower marginal zone, and dorsalization of the upper dorsal marginal zone evoked during involution.  相似文献   

6.
Summary The role of stretching-generated tensile stresses upon the organization of axial rudiments have been studied. Pieces of the dorsal wall ofXenopus laevis andRana temporaria embryos at the late gastrula stage were rotated through 90°, transplanted into the field of neurulation tensions of another embryo and replaced by ventral tissues already insensitive to inductive influences. The axial rudiments which developed from rotated and transplanted dorsal tissues oped from rotated and transplanted dorsal tissues almost completely reorientated according to the tensile patterns in adjacent host tissues. Some of the donor cells changed their presumptive fates in accordance with their new positions in the host tensile field. Transplanted ventral tissues were involved in the morphogenetic movements specific for the dorsal regions and imitated some typical dorsal structures. In the regions without pronounced tensions the structure of transplanted axial rudiments was chaotic. It is suggested that the organization of the axial structures is established and maintained by tensile fields created by uniformly polarized cells. Cell polarization can be transmitted by contact from host to donor tissues. The specificity of this propagating process and its morphogenetical role is discussed.  相似文献   

7.
We tested the effects of noggin RNA from Xenopus laevis on axis induction in embryos of a direct developing frog, Eleutherodactylus coqui. We microinjected noggin RNA into one blastomere of 4-cell embryos at the site close to the animal pole, and found that overexpression of noggin RNA is not only sufficient to induce additional axes but also induces heads with eyes. We also injected noggin RNA into 8-cell or 16-cell embryos in various sites, including the marginal zone, above the marginal zone, and the vegetal pole, and found the formation of a complete secondary axis in all three types of injection. These effects of X. laevis noggin RNA on the E. coqui embryo are remarkably different from those found in the X. laevis embryo itself. It has been shown previously that overexpression of noggin RNA on the ventral side of the normal X. laevis embryo induces only a partial axis, with no head structures. We show here that the failure of noggin induction of a complete axis when overexpressed on the ventral side of the X. laevis embryos is not due to an insufficient amount of RNA injected. Also, the failure is unlikely due to inhibition from the primary axis since noggin RNA can induce duplicated head structures on opposite sides of UV-irradiated X. laevis embryos. There appear to be fundamental differences in the responses of E. coqui and X. laevis embryos to exogenous noggin RNA. We propose that these differences stem from an alteration in cytoplasmic arrangements that occurred during evolution of this large egg. Received: 26 July 1999 / Accepted: 1 September 1999  相似文献   

8.
Single cells from 512-cell Xenopus embryos, totally labeled with intracellular horseradish peroxidase, were transplanted orthotopically (from either dorsal or lateral marginal zone) or heterotopically (between these two marginal zones) to unlabeled host embryos at the 512-cell stage. At tailbud stage 23 the locations, numbers, and histotypes of labeled cells were recorded. The transplanted cell had divided many times, giving rise to labeled progeny that expressed a wide range of cell types and were located in several different organs. Locations and cell types of progeny derived from orthotopic grafts to the dorsal marginal zone were different from those derived from grafts to the lateral marginal zone. Single cells grafted heterotopically to either dorsal or lateral positions expressed fates that were appropriate to their final grafted positions, and not to their original positions. We conclude that individual cells of the marginal zone at the 512-cell stage have multiple presumptive fates and have not been committed to any single fate.  相似文献   

9.
The role of cooperative cell movements has been explored in establishment of regular segregation of the marginal zone of Xenopus laevis embryos into the main axial rudiments: notochord, somites and neural tissue. For this purpose, the following operations were performed at the late blastula-early gastrula stages: (1) isolation of marginal zones, (2) addition of the ventral zone fragments to the marginal zones, (3) dissection of isolated marginal zones along either ventral (a) or dorsal (b) midlines, (4) immediate retransplantation of excised fragments of the suprablastoporal area to the same places without rotation or after 90° rotation, (5) Π-shaped separation of the suprablastoporal area either anteriorly or posteriorly. In experiments 1, 4, and 5, lateromedial convergent cell movements and differentiation of the axial rudiments were suppressed. In experiments 4 and 5, cell movements were reoriented ventrally, the entire embryo architecture was extensively reconstructed, and the axial rudiments were relocated to the blastopore lateral lips. In experiment 3, convergent cell movements were restored and oriented either towards the presumptive embryo midline (a), or in the perpendicular direction (b). In both cases, well developed axial rudiments elongated perpendicularly to cell convergences were formed. If the areas of axial rudiment formation were curved, mesodermal somites and neural tissue were always located on the convex (stretched) and concave (compressed) sides, respectively. We conclude that no stable prepatterning of the marginal zone takes place until at least the midgastrula stage. This prepatterning requires cooperative cell movements and associated mechano-geometric constrains.  相似文献   

10.
11.
The differentiation and organizer activity of newt ectoderm treated with activin A was studied in explantation and transplantation experiments. In the explantation experiments, ectoderm dissected from late morulae–early gastrulae stage embryos treated with a high concentration of activin A (100 ng/mL) formed only yolk-rich endodermal cells. Mesodermal tissues, such as notochord and muscle, were seldom found in these explants. When they were transplanted into the blastocoele of other early gastrulae, they formed part of the endoderm of the host embryo and induced a secondary axis with only posterior characters (including axial mesoderm and neural tissues). In contrast, whole secondary axes were induced when activin-treated ectoderm was transplanted into the ventral marginal zone (VMZ) of early blastulae. The transplanted pieces invaginated by themselves and differentiated into foregut structures including pharynx, stomach, and liver. These phenomena were also observed in experiments in which presumptive foregut was used instead of activin-treated ectoderm. These findings show that activin-treated ectoderm can act as the complete organizing center in Cynops .  相似文献   

12.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

13.
Influence of the relaxation of mechanical tensions upon collective cell movements, shape formation, and expression patterns of tissue-specific genes has been studied in Xenopus laevis embryos. We show that the local relaxation of tensile stresses within the suprablastoporal area (SBA) performed at the early-midgastrula stage leads to a complete arrest of normal convergent cell intercalation towards the dorsal midline. As a result, SBA either remains nondeformed or protrudes a strip of cells migrating ventralwards along one of the lateral lips of the opened blastopore. Already, few minutes later, the tissues in the ventral lip vicinity undergo abnormal transversal contraction/longitudinal extension resulting in the abnormal cell convergence toward ventral (rather than dorsal) embryo midline. Within a day, the dorsally relaxed embryos acquire pharyngula-like shapes and often possess tail-like protrusions. Their antero-posterior and dorso-ventral polarity, as well as expression patterns of pan-neural (Sox3), muscular cardiac actin, and forebrain (Otx2) genes substantially deviate from the normal ones. We suggest that normal gastrulation is permanently controlled by mechanical stresses within the blastopore circumference. The role of tissue tensions in regulating collective cell movements and creating pharyngula-like shapes are discussed.  相似文献   

14.
Small pieces of the animal cap of X. borealis gastrulae were transplanted into various regions of the noninvoluting marginal zone of albino X. laevis gastrulae, and the distribution of the donor cells was analyzed by quinacrine fluorescence staining.
The present study indicated that the prospective central nervous system (CNS) lies as a belt-shaped area in the noninvoluting marginal zone of early gastrulae. This belt-shaped prospective neural area extends as far as 0.7 mm (115° to the vegetal pole) above the blastopore in the dorsal midline and 1.3 mm lateral (130° to the dorsal midline) to the dorsal midline. The ectoderm of the dorsal region extends in the animal-vegetal direction and forms the ventral side of the CNS. The dorsalateral and lateral regions converge toward the dorsal midline and extended in the animal-vegetal direction. The former constitutes the lateral side of the anterior CNS, and the latter the dorso-lateral side of the posterior CNS.
The outer layer of ectoderm which was transplanted onto the inner layer of the host gastrula differentiated into neural tissues.
The prospective areas of the CNS and their morphogenetic movement during Xenopus embryogenesis are also discussed with regard to neural induction.  相似文献   

15.
Time-lapse videomicrographic and SEM analyses of normal andmicrosurgically altered gastrulation show that the morphogeneticmovements of the dorsal marginal zone (DMZ)—extension,convergence, and involution—all result from behavior thatoccurs after the marginal zone has involuted. Before its involution,the DMZ shows no detectable capacity for autonomous convergenceor extension. If its involution is prevented, the DMZ will showconvergence and extension but only at developmental stages ator beyond the stage at which it normally would have involuted.Thus autonomous convergence and extension, which have been ascribedto the DMZ are, in fact, properties of the dorsal mesodermalmantle (DMM) and the archenteron roof. SEM analysis of cellshape and packing patterns, suggest that cells of the DMM merge(interdigitate) mediolaterally, between one another, beginningjust beyond the point of involution. This behavior is thoughtto reduce the width and increase the length (postinvolutionconvergence and extension) of the DMM. The decrease in circumference(width) at the vegetal-most part of the newly involuted DMMforms a constriction ring just inside the blastopore. Constrictionand concurrent elongation of the DMM act in concert to movethe blastoporal lip vegetally. The DMZ is passively pulled vegetallyand over the blastoporal lip as deep cells are recruited forparticipation in mediolateral interdigitation at the vegetalend of the DMM.  相似文献   

16.
Two-dimensional gel electrophoresis has been used to analyze protein synthesis in dorsal and ventral regions in embryonic stages of Xenopus laevis. Proteins specific either to dorsal or to ventral regions are synthesized for the first time at gastrulation, concomitant with morphological differentiation. The reliability of these proteins as markers of dorsal and ventral differentiation was tested by examining their synthesis in Uv-irradiated embryos, which have severely reduced capacity for dorsal development, reflected in reduced levels of the neuromuscular-specific enzyme acetylcholinesterase, but which continue to synthesize the great majority of proteins at normal rates. Synthesis of dorsal indicator proteins should be reduced or absent in these embryos, whereas ventral indicators should be synthesized at least to the same extent as in control embryos. Some of the putative dorsal and ventral indicators failed this test, but the majority were confirmed as reliable markers of dorsal and ventral differentiation, thus providing a connection between morphology and gene expression in the establishment of the dorsal-ventral axis in X. laevis.  相似文献   

17.
The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.  相似文献   

18.
We have examined the tissue interactions responsible for the expression of heart-forming potency during gastrulation. By comparing the specification of different regions of the marginal zone, we show that heart-forming potency is expressed only in explants containing both the dorsal lip of the blastopore and deep mesoderm between 30 degrees and 45 degrees lateral to the dorsal midline. Embryos from which both of these 30 degrees-45 degrees dorsolateral regions have been removed undergo heart formation in two thirds of cases, as long as the dorsal lip is left intact. If the dorsal lip is removed along with the 30 degrees-45 degrees regions, heart formation does not occur. These results indicate that the dorsolateral deep mesoderm must interact with the dorsal lip in order to express heart-forming potency. Transplantation of the dorsal lip into the ventral marginal zone of host embryos results in the formation of a secondary axis; in over half of cases, this secondary axis includes a heart derived from the host mesoderm. These findings suggest that the establishment of heart mesoderm is initiated by a dorsalizing signal from the dorsal lip of the blastopore.  相似文献   

19.
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.  相似文献   

20.
When groups of cells from the inner marginal zone (mesendoderm) of the early Xenopus gastrula are placed on a fibronectin-coated substratum, the explants of the dorsal region spread into monolayers whereas those from the ventral region, though they adhere to the substratum, do not show this spreading reaction. This different behaviour is not reflected in the in vitro behaviour of the respective cells kept in isolation. No difference between dorsal and ventral cells was observed, when they were tested for lamellipodia-driven spreading, movement over the substratum or properties of integrin- and cadherin-mediated adhesion. However, cell contacts between individual dorsal cells are significantly less stable than those between ventral cells. The higher flexibility of the cell-cell contacts seems to determine the spreading behaviour of the dorsal explants, which includes lamellipodia-driven outward movement of the peripheral cells, rearrangements of the cells, building up a horizontal tension within the aggregate and intercalation of cells from above into the bottom layer. Ventral explants lack these properties. Staining for F-actin revealed a decisive difference of the supracellular organisation of the cytoskeleton that underlies the morphology of the different types of explants. Evidence for a higher flexibility of cell-cell contacts in the dorsal mesendoderm was also obtained in SEM studies on gastrulating embryos. Dorsal mesendodermal cells show stronger protrusive activity as compared to ventral mesendodermal cells. The meaning of these observations for the mechanisms of morphogenetic movements during gastrulation is central to the discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号