首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Purified hyphal wall fragments of Schizophyllum commune are analysed and shown to consist of glucose (67.6%), mannose (3.4%), xylose (0.2%), (N-acetyl)glucosamine (12.5%), amino acids (6.4%) and some lipid material (3.0%). 2. The previously proposed structures of two glucans located at the hyphal wall surface (Wessels et al. (1972) Biochim. Biophys. Acta 273, 346-358) were essentially confirmed using methylation analysis. The mucilaginous glucan consists of 1,3-linked beta-glucan chains with branches of single glucose units attached by beta-1,6 linkages on every third unit, on average, along the chain. The alkali soluble S-glucan is an exclusively 1,3-linked alpha-glucan. 3. The alkali-insoluble R-glucan, occurring in close association with chitin, in the inner wall layer, has been characterised by methylation analysis, X-ray diffraction, enzymatic hydrolysis with purified exo-beta-1,3-glucanase and Smith degradation. It appears to be a highly branched beta-1,3,beta-1,6-glucan and a model of this glucan is proposed. Certain parts of this highly insoluble R-glucan bear a close structural similarity to the mucilaginous glucan present at the outer wall surface and in the medium.  相似文献   

2.
A mutant of Saccharomyces cerevisiae defective in the cell wall beta-glucan structure was obtained. The mutant cells are extremely sensitive to (beta 1-3)-glucanase digestion and mild alkali treatment. Structural analysis revealed that the alkali-insoluble, skeletal glucan from wild type cells contains two components, a (beta 1-3) linked glucan with a laminated structure, and a highly branched glucan containing predominantly (beta 1-6) linkages. The mutant cells lack the latter component.  相似文献   

3.
Glucans were isolated from the cell wall of the yeast (Y) and mycelial (M) forms of Paracoccidioides brasiliensis. The alkali-soluble glucan of the Y form had properties of alpha-1,3-glucan. The alkali-insoluble glucan of the M form was identified as a beta-glucan which contains a beta-(1 --> 3)-glycosidic linkage by infrared absorption spectrum, by effect of beta-1,3-glucanase, and by partial acid hydrolysis. The alkali-soluble glucans of the M form were a mixture of alpha- and beta-glucans and the ratio of alpha- to beta-glucan was variable, depending on the preparations.  相似文献   

4.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

5.
The ultrastructure and component polysaccharides of the cell wall of Pythium debaryanum IFO-5919 were investigated. From results obtained by means of acid, alkali, Schweitzer reagent and β-1, 3-glucanase treatments and electron microscopy, it was concluded that 1) the acid-extracted fraction was a 1,3-linked branched glucan, 2) the alkali-extracted fraction was a mixture of 1,3-, 1,6-, and 1,3,6-linked highly branched two glucans, 3) the Schweitzer reagent-extracted fraction was a β-1, 4-linked glucan, 4) the cell wall was constructed from two types of cullulosic microfibrils, as a frame and as a finer network, and amorphous β-1, 3-glucan including β-1, 6-linkage, 5) cellulosic microfibrils were covered by matrix material consisting of a mixture of amorphous β-1, 3-linked and β-1, 6-linked branching glucans.  相似文献   

6.
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.  相似文献   

7.
Cell wall analysis   总被引:3,自引:0,他引:3  
The cell wall is a rigid structure essential for survival of the fungal cell. Because of its absence in mammalian cells, the cell wall is an attractive target for antifungal agents. Thus, for different reasons, it is important to know how the cell wall is synthesized and how different molecules regulate that synthesis. The Schizosaccharomyces pombe cell wall is mainly formed by glucose polysaccharides and some galactomannoproteins. Here, we describe a fast and reliable method to analyze changes in S. pombe cell wall composition by using specific enzymatic degradation and chemical treatment of purified cell walls. This approach provides a powerful means to analyze changes in (1,3)beta-glucan and (1,3)alpha-glucan, two main polysaccharides present in fungal cell walls. Analysis of cell wall polymers will be useful to search for new antifungal drugs that may inhibit cell wall biosynthesis and/or alter cell wall structure.  相似文献   

8.
The interface between plants and pathogens plays an important role in their interaction. Studies of fungal cell walls are scarce and previous results show the existence of α-1,3-glucans in addition to ß-glucans. In addition, α-1,3-glucans are not present in plant cell walls, and α-glucanase activity in plants has not been described before. In a previous work, we purified and characterized an α-1,3-glucan from a binucleated, non-pathogenic Rhizoctonia isolate, which induces plant defence responses. Therefore, in order to study the architecture of the fungal cell wall, and the accessibility and localization of the α-glucan elicitor, we prepared an antibody against the α-1,3-glucan and analysed its localization by TEM. Immunolocalization showed the presence of the α-1,3-glucan in the intercellular spaces and along the cell walls, mainly on the inner layers. This result, and the presence of the α-1,3-glucan in the liquid culture medium in which binucleated non-pathogenic Rhizoctonia was grown, confirmed that the α-glucan had been secreted. The α-1,3-glucan was also immunocytolocalized on potato sprouts tissue elicited with the glucan; gold particles were observed in vacuoles and close to the plasmalemma. In addition, α-glucanase activity in potato sprouts was detected using cell wall glucans from the pathogenic isolate R. solani AG-3 as substrates; whereas, when cell wall glucans from non-pathogenic isolates were used, no α-glucanase activity was detected. Our results suggest that the presence of α-1,3-glucans could be associated with the formation and integrity of the cell wall and also with plant–fungi interactions. This is the first report to describe α-glucanolytic activity in plants.  相似文献   

9.
10.
Evidence is presented for the existence of a noncellulosic β-1,3-glucan in cotton fibers. The glucan can be isolated as distinct fractions of varying solubility. When fibers are homogenized rigorously in aqueous buffer, part of the total β-1,3-glucan is found as a soluble polymer in homogenates freed of cell walls. The proportion of total β-1,3-glucan which is found as the soluble polymer varies somewhat as a function of fiber age. The insoluble fraction of the β-1,3-glucan remains associated with the cell wall fraction. Of this cell wall β-1,3-glucan, a variable portion can be solubilized by treatment of walls with hot water, a further portion can be solubilized by alkaline extraction of the walls, and 17 to 29% of the glucan remains associated with cellulose even after alkaline extraction. A portion of this glucan can also be removed from the cell walls of intact cotton fibers by digestion with an endo-β-1,3-glucanase. The glucan fraction which can be isolated as a soluble polymer in homogenates freed of cell walls is not associated with membranous material, and we propose that it represents glucan which is also extracellular but not tightly associated with the cell wall. Enzyme digestion studies indicate that all of the cotton fiber glucan is β-linked, and methylation analyses and enzyme studies both show that the predominant linkage in the glucan is 1 → 3. The possibility of some minor branching at C-6 can also be deduced from the methylation analyses. The timing of deposition of the β-1,3-glucan during fiber development coincides closely with the onset of secondary wall cellulose synthesis. Kinetic studies performed with ovules and fibers cultured in vitro show that incorporation of radioactivity from [14C]glucose into β-1,3-glucan is linear with respect to time almost from the start of the labeling period; however, a lag is observed before incorporation into cellulose becomes linear with time, suggesting that these two different glucans are not polymerized directly from the same substrate pool. Pulse-chase experiments indicate that neither the β-1,3-glucan nor cellulose exhibits significant turnover after synthesis.  相似文献   

11.
12.
The cell wall: a carbohydrate armour for the fungal cell   总被引:5,自引:0,他引:5  
The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.  相似文献   

13.
The localization of the derepressible beta-1,3-glucanases of Penicillium italicum and the cell wall autolysis under conditions of beta-1,3-glucanase derepression (24 h in a low-glucose medium) were studied. About 15% of the total activity was secreted into the culture medium during the 24-h period and consisted of similar amounts of each of the three beta-1,3-glucanases (I, II, III) produced by this species. Treatment of derepressed mycelia with periplasmic enzyme-inactivating agents resulted in a loss of 45% of the mycelium-bound beta-1,3-glucanase. Analysis of periplasmic enzymes solubilized by 2 M NaCl or by autolysis of isolated cell walls revealed that only beta-1,3-glucanases II and III were bound to the cell wall. These two enzymes were capable of releasing in vitro reducing sugars from cell walls, whereas beta-1,3-glucanase I was not. In addition, the autolytic activity of cell walls isolated from derepressed mycelium was greater than that of cell walls isolated from repressed mycelium. The incubation of the fungus in the low-glucose medium also resulted in the in vivo mobilization of 34% of the cell wall beta-1,3-glucan, and this mobilization was fully prevented by cycloheximide, which also blocked derepression of beta-1,3-glucanases. Derepression of beta-1,3-glucanase seems to be coupled to the mobilization of cell wall glucan.  相似文献   

14.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

15.
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.  相似文献   

16.
The cell wall of yeast contains a major structural unit, consisting of a cell wall protein (CWP) attached via a glycosylphosphatidylinositol (GPI)-derived structure to beta 1,6-glucan, which is linked in turn to beta 1, 3-glucan. When isolated cells walls were digested with beta 1,6-glucanase, 16% of all CWPs remained insoluble, suggesting an alternative linkage between CWPs and structural cell wall components that does not involve beta 1,6-glucan. The beta 1,6-glucanase-resistant protein fraction contained the recently identified GPI-lacking, O-glycosylated Pir-CWPs, including Pir2p/Hsp150. Evidence is presented that Pir2p/Hsp150 is attached to beta 1,3-glucan through an alkali-sensitive linkage, without beta 1,6-glucan as an interconnecting moiety. In beta 1,6-glucan-deficient mutants, the beta 1,6-glucanase-resistant protein fraction increased from 16% to over 80%. This was accompanied by increased incorporation of Pir2p/Hsp150. It is argued that this is part of a more general compensatory mechanism in response to cell wall weakening caused by low levels of beta 1,6-glucan.  相似文献   

17.
18.
Two new beta-glucanase-encoding genes, EXG2 and MLG2, were isolated from the plant-pathogenic fungus Cochliobolus carbonum using polymerase chain reaction based on amino acid sequences from the purified proteins. EXG2 encodes a 46.6-kDa exo-beta1,3-glucanase and is located on the same 3.5-Mb chromosome that contains the genes of HC-toxin biosynthesis. MLG2 encodes a 26.8-kDa mixed-linked (beta1,3-beta1,4) glucanase with low activity against beta1,4-glucan and no activity against beta1,3-glucan. Specific mutants of EXG2 and MLG2 were constructed by targeted gene replacement. Strains with multiple mutations (genotypes exg1/mlg1, exg2/mlg1, mlg1/mlg2, and exg1/exg2/mlg1/mlg2) were also constructed by sequential disruption and by crossing. Total mixed-linked glucanase activity in culture filtrates of mlg1/mlg2 and exg1/exg2/mlg1/mlg2 mutants was reduced by approximately 73%. Total beta1,3-glucanase activity was reduced by 10, 54, and 96% in exg2, mlg1, and exg1/exg2/mlg1/mlg2 mutants, respectively. The quadruple mutant showed only a modest decrease in growth on beta1,3-glucan or mixed-linked glucan. None of the mutants showed any decrease in virulence.  相似文献   

19.
The structure of immunogenic and immunomodulatory cell wall glucans of Candida albicans is commonly interpreted in terms of a basic polysaccharide consisting of a beta-D-(1-->3)-linked glucopyranosyl backbone possessing beta-D-(1-->6)-linked side chains of varying distribution and length. This proposed molecular architecture has been re-evaluated by the present study on the products of selective enzymolysis of insoluble C. albicans glucan particles (GG). High resolution 1H (400 and 700 MHz) and 13C (100 and 175 MHz) NMR analyses were performed on a soluble beta-glucan preparation (GG-Zym) obtained by GG digestion with endo-beta-D-(1-->3)-glucanase and on its high- (Pool 1) and low-molecular weight (Pool 2) sub-fractions. The resonances typical of uniformly beta-D-(1-->6)- and beta-D-(1-->3)-linked linear glucans, together with additional multiplets assigned to short-chain oligoglucosides, were detected in GG-Zym. Pool 1 (46.3+/-6.4% of GG-Zym content) consisted of beta-D-(1-->6)-linked glucopyranosyl polymers, with short beta-D-(1-->3)-branched side chains of 2.20+/-0.02 units (branching degree (DB)=0.14+/-0.03). Pool 2 was a mixture of glucose and linear short-chain beta-D-(1-->3)-oligoglucosides. Further digestion of Pool 1 by beta-D-(1-->6)-glucanase yielded a mixture of glucose and short beta-D-(1-->6)-linked, either linear or beta-D-(1-->3,6) branched, oligomers. These endoglucanase digestion patterns were consistent with the presence in C. albicans cell wall glucans of beta-D-(1-->6)-linked glucopyranosyl backbones possessing beta-D-(1-->3)-linked side chains, a structure very close to that of beta-D-(1-->6)-glucan from Saccharomyces cerevisiae yeast. This finding may provide the grounds for further elucidation of the cell wall structure and a better understanding of the biological properties of C. albicans beta-glucans.  相似文献   

20.
The yeast cell wall contains beta1,3-glucanase-extractable and beta1,3-glucanase-resistant mannoproteins. The beta1,3-glucanase-extractable proteins are retained in the cell wall by attachment to a beta1,6-glucan moiety, which in its turn is linked to beta1,3-glucan (J. C. Kapteyn, R. C. Montijn, E. Vink, J. De La Cruz, A. Llobell, J. E. Douwes, H. Shimoi, P. N. Lipke, and F. M. Klis, Glycobiology 6:337-345, 1996). The beta1,3-glucanase-resistant protein fraction could be largely released by exochitinase treatment and contained the same set of beta1,6-glucosylated proteins, including Cwp1p, as the B1,3-glucanase-extractable fraction. Chitin was linked to the proteins in the beta1,3-glucanase-resistant fraction through a beta1,6-glucan moiety. In wild-type cell walls, the beta1,3-glucanase-resistant protein fraction represented only 1 to 2% of the covalently linked cell wall proteins, whereas in cell walls of fks1 and gas1 deletion strains, which contain much less beta1,3-glucan but more chitin, beta1,3-glucanase-resistant proteins represented about 40% of the total. We propose that the increased cross-linking of cell wall proteins via beta1,6-glucan to chitin represents a cell wall repair mechanism in yeast, which is activated in response to cell wall weakening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号