首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Receptor-activated phosphoinositide (PI) 3-kinases produce PtdIns(3, 4,5)P(3) and its metabolite PtdIns(3,4)P(2) that function as second messengers in membrane recruitment and activation of target proteins. The cytohesin and centaurin protein families are potential targets for PtdIns(3,4,5)P(3) that also regulate and interact with Arf GTPases. Consequently, these families are poised to transduce PI 3-kinase activation into coordinated control of Arf-dependent pathways. Proposed downstream events in PI 3-kinase-regulated Arf cascades include modulation of vesicular trafficking and the actin cytoskeleton.  相似文献   

2.
G protein-coupled receptors (GPCRs) belong to one of the largest family of signaling receptors in the mammalian genome [1]. GPCRs elicit cellular responses to multiple diverse stimuli and play essential roles in human health and disease. GPCRs have important clinical implications in various diseases and are the targets of approximately 25–50% of all marketed drugs [2], [3]. Understanding how GPCRs are regulated is essential to delineating their role in normal physiology and in the pathophysiology of several diseases. Given the vast number and diversity of GPCRs, it is likely that multiple mechanisms exist to regulate GPCR function. While GPCR signaling is typically regulated by desensitization and endocytosis mediated by phosphorylation and β-arrestins, it can also be modulated by ubiquitination. Ubiquitination is emerging an important regulatory process that may have unique roles in governing GPCR trafficking and signaling. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins and ubiquitination that may be applicable to some GPCRs but not others. While the function of ubiquitination is generally thought to promote receptor endocytosis and endosomal sorting, recent studies have revealed that ubiquitination also plays an important role in positive regulation of GPCR signaling. Here, we will review recent developments in our understanding of how ubiquitin regulates GPCR endocytic trafficking and how it contributes to signal transduction induced by GPCR activation.  相似文献   

3.
Endocytosis of the mu-opioid receptor (MOPr) has been shown to play a protective role against the development of tolerance to opioid drugs by facilitating receptor reactivation and recycling. It has been further demonstrated, that the opioid-mediated and ADP-ribosylation factor (ARF)-dependent activation of phospholipase D2 (PLD2) is a prerequisite for MOPr endocytosis. In this study, we investigated which particular ARF protein is involved in opioid-mediated PLD2 activation and what are the mechanisms of ARF function in MOPr trafficking and signaling. By coexpressing the MOPr and dominant negative or constitutively active ARF mutants in human embryonic kidney (HEK) 293 cells and primary cultured cortical neurons as well as by using siRNA technology, we identified the ARF6 protein to be involved in the regulation of MOPr endocytosis. We also found that expression of an effector domain mutant of ARF6, which is incapable of activating PLD, blocked agonist-induced endocytosis suggesting that ARF6 function in MOPr trafficking is PLD2-mediated. Analogously, opioid-mediated activation of PLD2 is blocked in the presence of dominant negative ARF6 mutants. Finally, we also showed that ARF6 protein influences the recycling/reactivation of internalized MOPr and thus modulates agonist-induced MOPr desensitization. Together, these results provide evidence that ARF6 protein regulates MOPr trafficking and signaling via PLD2 activation and hence affects the development of opioid receptor desensitization and tolerance.  相似文献   

4.
5.
c-Cbl-mediated regulation of LAT-nucleated signaling complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The engagement of the T-cell receptor (TCR) causes the rapid recruitment of multiple signaling molecules into clusters with the TCR. Upon receptor activation, the adapters LAT and SLP-76, visualized as chimeric proteins tagged with yellow fluorescent protein, transiently associate with and then rapidly dissociate from the TCR. Previously, we demonstrated that after recruitment into signaling clusters, SLP-76 is endocytosed in vesicles via a lipid raft-dependent pathway that requires the interaction of the endocytic machinery with ubiquitylated proteins. In this study, we focus on LAT and demonstrate that signaling clusters containing this adapter are internalized into distinct intracellular compartments and dissipate rapidly upon TCR activation. The internalization of LAT was inhibited in cells expressing versions of the ubiquitin ligase c-Cbl mutated in the RING domain and in T cells from mice lacking c-Cbl. Moreover, c-Cbl RING mutant forms suppressed LAT ubiquitylation and caused an increase in cellular LAT levels, as well as basal and TCR-induced levels of phosphorylated LAT. Collectively, these data indicate that following the rapid formation of signaling complexes upon TCR stimulation, c-Cbl activity is involved in the internalization and possible downregulation of a subset of activated signaling molecules.  相似文献   

6.
7.
Summary Ion channels are signaling molecules and by them-selves perform no work. In this regard they are un like the usual membrane enzyme effectors for G proteins. The pathways of G protein receptor, G protein and ion channels are, therefore, purely infor mational in function. Because a single G protein may have several ion channels as effectors, the effects should be coordinated and this seems to be the case. Inhibition of Ca2+ current and stimulation of K+ currents would have a greater impact than either alone. Additional flexibility is provided by spontane ous noise in the complexes of G protein receptor, G protein, and ion channel. By having a non-zero setpoint, the range of control is extended and the responses become bi-directional.  相似文献   

8.
Generation of PA (phosphatidic acid) by PLD (phospholipase D)-catalysed hydrolysis of phosphatidylcholine plays a pivotal role in cellular signalling pathways that regulate organization of the actin cytoskeleton, vesicular transport and exocytosis and stimulation of cell growth and survival. PLD regulation and function are intimately linked with phosphoinositide metabolism. Phosphatidyl 4-phosphate 5-kinase is stimulated by PA in vitro and this enzyme is the downstream effector of a significant subset of PLD signalling pathways. Yeast and mammalian PLDs are potently and specifically activated by the product of this kinase, PtdIns(4,5)P2, through interactions mediated by a polybasic motif within the catalytic core of the enzyme. Integrity of this motif is critical for agonist activation of mammalian PLD and for PLD function in secretion, sporulation and exocytosis in vivo. Although dispensable for catalysis in vitro, these PLD enzymes also contain N-terminal PH (pleckstrin) and PX (phox) homology domains. Binding studies using recombinantly expressed PLD fragments indicate that the PH and PX domains also interact specifically with distinct phosphoinositide ligands. Both the PX and PH domains are important for PLD function by controlling the dynamic association of the enzyme with the plasma membrane and its intracellular trafficking by the endocytic pathway. These results identify two distinct modes of regulation of PLD by phosphoinositides: stimulation of catalysis mediated by the polybasic domain and dynamic regulation of membrane targeting mediated primarily by the PH and PX domains.  相似文献   

9.
10.
Narayan M 《The FEBS journal》2012,279(13):2272-2282
The study of disulfide-bond-containing proteins has advanced our understanding of the mechanism(s) by which the majority of secretory and membrane-bound proteins acquire their biologically functional folded forms. This covalent linkage has been exploited by a number of research laboratories to harness or trap intermediates populating the folding trajectories of biopolymers. The resulting body of gathered in vitro data demonstrates that, in general, there is a common event underscoring the maturation of disulfide-bond-containing proteins. This commonality is the existence of competition between a physical, conformational folding reaction and a chemical, thiol-disulfide exchange reaction during fold acquisition. The competition, in turn, impacts the fate of the polypeptide in being secreted or retrotranslocated. The role of a host of subcellular factors, including protein disulfide isomerase, that influences this critical spatiotemporal juncture of the fold-maturation process is discussed. Finally, the impact of this competition on the onset of neurodegenerative disorders is elaborated upon.  相似文献   

11.
Verhey KJ 《Current biology : CB》2007,17(18):R804-R806
Motor proteins carry scaffolding proteins and associated signaling molecules along cytoskeletal tracks to specific cellular destinations. Recent work has shown that the signaling components are not just along for the ride. Rather, they can play an important role in regulating the motor that carries them.  相似文献   

12.
Li F  Mandal M  Mishra SK  Barnes CJ  Kumar R 《FEBS letters》2002,524(1-3):49-53
To identify genes whose expression is modulated by heregulin-beta1 (HRG), a regulatory polypeptide for mammary epithelial cells, we performed differential display screening of MCF-7 cell mRNA. One cDNA clone upregulated by HRG was identical to human ADP-ribosylation factor 3 (ARF3), a guanine nucleotide-binding protein functioning in vesicular trafficking, phospholipase D activation and intracellular transport. HRG treatment increased expression of ARF3 mRNA and protein. Also, HRG triggered a rapid redistribution of ARF3, first to cell membranes and then to the nuclear compartment, where ARF3 colocalized with acetylated histone H3 in discrete regions. In addition, the ARF3 protein was developmentally regulated in the mammary gland with the highest levels in virgin and post-weaning glands. Together, these findings suggest for the first time that stimulation of ARF3 expression, subcellular redistribution and interaction with acetylated histone H3 may play a role in the action of HRG in mammary epithelial cells.  相似文献   

13.
Phosphoinositides are a group of phospholipids whose inositol headgroups can be phosphorylated at three distinct positions thereby generating seven different isotypes. The conversion between these lipid species depends on the activity of specific sets of phosphoinositide kinases and phosphatases whose targeting and activity is critical to establish the landscape of phosphoinositides on the cytosol-facing hemi-membrane of all organelles and plasmalemma. Phosphoinositides play pleiotropic roles ranging from signalling and membrane trafficking to modulation of ion channels and survival. In neurons and neurosecretory cells, whose main function is to communicate through the release of neurotransmitter, most of the work has focused on the role played by phosphatidylinositol (4,5) bisphosphate in controlling the mechanism underpinning neurotransmitter release through the fusion of secretory vesicles with the plasmalemma. Emerging evidence supports a multi-faceted regulation of neuroexocytosis by 3-phosphorylated phosphoinositides. In this review, we summarise the molecular mechanism by which these lipids control exocytosis and how minute changes in their metabolism can have devastating effects in the nervous system and lead to neurodegeneration.  相似文献   

14.
CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein-protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We specifically targeted the PDZ domain-based LPA2 (type 2 lysophosphatidic acid receptor)-NHERF2 (Na+/H+ exchanger regulatory factor-2) interaction within the CFTR-NHERF2-LPA2-containing macromolecular complexes in airway epithelia and tested its regulatory role on CFTR channel function. We identified a cell-permeable small-molecule compound that preferentially inhibits the LPA2-NHERF2 interaction. We show that this compound can disrupt the LPA2-NHERF2 interaction in cells and thus compromises the integrity of macromolecular complexes. Functionally, it elevates cAMP levels in proximity to CFTR and upregulates its channel activity. The results of the present study demonstrate that CFTR Cl- channel function can be finely tuned by modulating PDZ domain-based protein-protein interactions within the CFTR-containing macromolecular complexes. The present study might help to identify novel therapeutic targets to treat diseases associated with dysfunctional CFTR Cl- channels.  相似文献   

15.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

16.
Unliganded steroid receptors exist as heteromeric complexes comprised of heat shock and immunophilin proteins that associate either directly or indirectly with receptor carboxyl–terminal ligand-binding domains. Molecular chaperons, and other proteins associated with steroid receptors, play an important role in the maturation of receptors to a hormone-binding competent state. Steroid receptor-associated 90 and 70 kDa heat shock proteins, hsp90 and hsp70, respectively, have well established roles in protein folding in addition to participating in numerous subcellular trafficking pathways. In this review, we discuss the possible roles that molecular chaperons, such as hsp90, hsp70 and DnaJ proteins, have in steroid receptor trafficking within two distinct subcellular compartments, i.e. the cytoplasm and nucleus.  相似文献   

17.
The endosomal pathway provides a major platform for ubiquitin-modifying enzymes, which act upon membrane-associated proteins in transit. Ubiquitylated cargo proteins are recognized by ubiquitin-binding domains inherent to key adaptor proteins at the plasma membrane and sorting endosome. A balance between ubiquitylation and deubiquitylation activities may govern the efficiency of recycling from endosomes to the plasma membrane versus lysosomal sorting through the multivesicular body pathway. We discuss the current knowledge of the properties of adaptors and ubiquitin-modifying proteins and their effects upon the trafficking and signaling of receptors and ligands associated with pathways fundamental to development.  相似文献   

18.
Phosphatidylinositol 4-phosphate 5-kinases [PtdIns4P5Ks] synthesise the majority of cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and phospholipase D1 (PLD1) synthesises large amounts of phosphatidic acid (PtdOH). The activities of PtdIns4P5Ks and PLDs are thought to be coupled during cell signalling in order to support large simultaneous increases in both PtdIns(4,5)P(2) and PtdOH, since PtdOH activates PtdIns4P5Ks and PLD1 requires PtdIns(4,5)P(2) as a cofactor. However, little is known about the control of such a system. Membrane recruitment of ADP-ribosylation factors (Arfs) activates both PtdIns4P5Ks and PLDs, but it is not known if each enzyme is controlled in series by different Arfs or in parallel by a single form. We show through pull-down and vesicle sedimentation interaction assays that PtdIns4P5K activation may be facilitated by Arf-enhanced membrane association. However PtdIns4P5Ks discriminate poorly between near homogeneously myristoylated Arf1 and Arf6 although examples of all three known active isoforms (mouse alpha>beta, gamma) respond to these G-proteins. Conversely PLD1 genuinely prefers Arf1 and so the two lipid metabolising enzymes are differentially controlled. We propose that isoform selective Arf/PLD interaction and not Arf/PtdIns4P5K will be the critical trigger in the formation of distinct, optimal triples of Arf/PLDs/PtdIns4P5Ks and be the principle regulator of any coupled increases in the signalling lipids PtdIns(4,5)P(2) and PtdOH.  相似文献   

19.
20.
Kuruvilla R  Zweifel LS  Glebova NO  Lonze BE  Valdez G  Ye H  Ginty DD 《Cell》2004,118(2):243-255
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号