首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly of the copper sites in cytochrome c oxidase involves a series of accessory proteins, including Cox11, Cox17, and Sco1. The two mitochondrial inner membrane proteins Cox11 and Sco1 are thought to be copper donors to the Cu(B) and Cu(A) sites of cytochrome oxidase, respectively, whereas Cox17 is believed to be the copper donor to Sco1 within the intermembrane space. In this report we show Cox17 is a specific copper donor to both Sco1 and Cox11. Using in vitro studies with purified proteins, we demonstrate direct copper transfer from CuCox17 to Sco1 or Cox11. The transfer is specific because no transfer occurs to heterologous proteins, including bovine serum albumin and carbonic anhydrase. In addition, a C57Y mutant of Cox17 fails to transfer copper to Sco1 but is competent for copper transfer to Cox11. The in vitro transfer studies were corroborated by a yeast cytoplasm expression system. Soluble domains of Sco1 and Cox11, lacking the mitochondrial targeting sequence and transmembrane domains, were expressed in the yeast cytoplasm. Metallation of these domains was strictly dependent on the co-expression of Cox17. Thus, Cox17 represents a novel copper chaperone that delivers copper to two proteins.  相似文献   

2.
The Saccharomyces cerevisiae gene SCO1 has been shown to play an essential role in copper delivery to cytochrome c oxidase. Biochemical studies demonstrated specific transfer of copper from Cox17p to Sco1p, and physical interactions between the Sco1p and Cox2p. Deletion of SCO1 yeast gene results in a respiratory deficient phenotype. This study aims to gain a more detailed insight on the effects of SCO1 deletion on S. cerevisiae metabolism. We compared, using a proteomic approach, the protein pattern of SCO1 null mutant strain and wild-type BY4741 strain grown on fermentable and on nonfermentable carbon sources. The analysis showed that on nonfermentable medium, the SCO1 mutant displayed a protein profile similar to that of actively fermenting yeast cells. Indeed, on 3% glycerol, this mutant displayed an increase of some glycolytic and fermentative enzymes such as glyceraldehyde-3-phosphate dehydrogenase 1, enolase 2, pyruvate decarboxylase 1, and alcohol dehydrogenase 1. These data were supported by immunoblotting and enzyme activity assay. Moreover, the ethanol assay and the oxygen consumption measurement demonstrated a fermentative activity in SCO1 mutant on respiratory medium. Our results suggest that on nonfermentable carbon source, the lack of Sco1p causes a metabolic shift from respiration to fermentation.  相似文献   

3.
Sco1 is implicated in the copper metallation of the Cu(A) site in Cox2 of cytochrome oxidase. The structure of Sco1 in the metallated and apo-conformers revealed structural dynamics primarily in an exposed region designated loop 8. The structural dynamics of loop 8 in Sco1 suggests it may be an interface for interactions with Cox17, the Cu(I) donor and/or Cox2. A series of conserved residues in the sequence motif (217)KKYRVYF(223) on the leading edge of this loop are shown presently to be important for yeast Sco1 function. Cells harboring Y219D, R220D, V221D, and Y222D mutant Sco1 proteins failed to restore respiratory growth or cytochrome oxidase activity in sco1Delta cells. The mutant proteins are stably expressed and are competent to bind Cu(I) and Cu(II) normally. Specific Cu(I) transfer from Cox17 to the mutant apo-Sco1 proteins proceeds normally. In contrast, using two in vivo assays that permit monitoring of the transient Sco1-Cox2 interaction, the mutant Sco1 molecules appear compromised in a function with Cox2. The mutants failed to suppress the respiratory defect of cox17-1 cells unlike wild-type SCO1. In addition, the mutants failed to suppress the hydrogen peroxide sensitivity of sco1Delta cells. These studies implicate different surfaces on Sco1 for interaction or function with Cox17 and Cox2.  相似文献   

4.
5.
Cox17 is an essential protein in the assembly of cytochrome c oxidase within the mitochondrion. Cox17 is implicated in providing copper ions for formation of CuA and CuB sites in the oxidase complex. To address whether Cox17 is functional in shuttling copper ions to the mitochondrion, Cox17 was tethered to the mitochondrial inner membrane by a fusion to the transmembrane domain of the inner membrane protein, Sco2. The copper-binding domain of Sco2 that projects into the inter-mitochondrial membrane space was replaced with Cox17. The Sco2/Cox17 fusion protein containing the mitochondrial import sequence and transmembrane segment of Sco2 is exclusively localized within the mitochondrion. The Sco2/Cox17 protein restores respiratory growth and normal cytochrome oxidase activity in cox17Delta cells. These studies suggest that the function of Cox17 is confined to the mitochondrial intermembrane space. Domain mapping of yeast Cox17 reveals that the carboxyl-terminal segment of the protein has a function within the intermembrane space that is independent of copper ion binding. The essential C-terminal function of Cox17 maps to a candidate amphipathic helix that is important for mitochondrial uptake and retention of the Cox17 protein. This motif can be spatially separated from the N-terminal copper-binding functional motif. Possible roles of the C-terminal motif are discussed.  相似文献   

6.
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.  相似文献   

7.
Cytochrome c oxidase (COX) is a multi-subunit enzyme of the mitochondrial respiratory chain. Delivery of metal cofactors to COX is essential for assembly, which represents a long-standing puzzle. The proteins Cox17, Sco1/2, and Cox11 are necessary for copper insertion into CuA and CuB redox centers of COX in eukaryotes. A genome-wide search in all prokaryotic genomes combined with genomic context reveals that only Sco and Cox11 have orthologs in prokaryotes. However, while Cox11 function is confined to COX assembly, Sco acts as a multifunctional linker connecting a variety of biological processes. Multifunctionality is achieved by gene duplication and paralogs. Neighbor genes of Sco paralogs often encode cuproenzymes and cytochrome c domains and, in some cases, Sco is fused to cytochrome c. This led us to suggest that cytochrome c might be relevant to Sco function and the two proteins might jointly be involved in COX assembly. Sco is also related, in terms of gene neighborhood and phylogenetic occurrence, to a newly detected protein involved in copper trafficking in bacteria and archaea, but with no sequence similarity to the mitochondrial copper chaperone Cox17. By linking the assembly system to the copper uptake system, Sco allows COX to face alternative copper trafficking pathways.  相似文献   

8.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

9.
A search of the Bacillus subtilis genome identifies a potential homolog, ypmQ, of the inner mitochondrial membrane protein Sco1 from yeast. Sco1 has been found to aid the delivery of copper to cytochrome c oxidase. B. subtilis expresses two members of the cytochrome oxidase family, a cytochrome c oxidase that has two copper centers, Cu(A) and Cu(B), and a menaquinol oxidase that has only Cu(B). Deletion of ypmQ in B. subtilis depresses expression of cytochrome c oxidase but not menaquinol oxidase. Levels of cytochrome c oxidase recover when copper is added to the growth medium of the DeltaypmQ strain or when ypmQ is expressed from a plasmid. Neither treatment affects the amount or activity of menaquinol oxidase. YpmQ in which two conserved cysteines are replaced by serines and a conserved histidine is replaced by alanine do not complement the deletion of ypmQ even though these mutant forms are found in the membrane extract at a level similar to the wild type protein. We propose that the two cysteines and the histidine are critical for the function of YpmQ and suggest they are involved in copper exchange between YpmQ and the Cu(A) site of cytochrome c oxidase.  相似文献   

10.
The Arabidopsis HCC1 gene is a homologue of the copper chaperone SCO1 from the yeast Saccharomyces cerevisiae. SCO1 (synthesis of cytochrome c oxidase 1) encodes a mitochondrial protein that is essential for the correct assembly of complex IV in the respiratory chain. GUS analyses showed HCC1 promoter activity in vascular tissue, guard cells, hydathodes, trichome support cells, and embryos. HCC1 function was studied in two hcc1 T-DNA insertion lines, hcc1-1 and hcc1-2. Gametophyte development was not affected by the disruption of HCC1, but homozygous hcc1-1 and hcc1-2 embryos became arrested at various developmental stages, mostly at the heart stage. Both the wild-type HCC1 gene and the modified gene coding for the C-terminally SNAP-tagged HCC1 were able to complement the embryo-lethal phenotype of the hcc1-1 line. Localization of the SNAP-tagged HCC1 in transgenic lines identified HCC1 as a mitochondrial protein. To determine if HCC1 is a functional homologue to Sco1p, the respiratory-deficient yeast sco1 mutant was transformed with chimeric constructs containing different combinations of HCC1 and SCO1 sequences. One of the resulting chimeric proteins restored respiration in the yeast mutant. This protein had the N-terminal mitochondrial targeting signal and the single transmembrane domain derived from Sco1p and the C-terminal half (including the copper-binding motif) derived from HCC1. Growth of the complemented yeast mutant was enhanced by the addition of copper to the medium. The data demonstrate that HCC1 is essential for embryo development in Arabidopsis, possibly due to its role in cytochrome c oxidase assembly.  相似文献   

11.
The provision of copper to cytochrome oxidase is one of the requisite steps in the assembly of the holoenzyme. Several proteins are involved in this process including Cox17p, Sco1p, and Cox11p. Cox17p, an 8-kDa protein, is the only molecule thought to be involved in shuttling copper from the cytoplasm into mitochondria. Given the small size of Cox17p, we have taken a random and site-directed mutagenesis approach to studying structure-function relationships in Cox17p. Mutations have been generated in 70% of the Cox17p amino acid residues, with only a small subset leading to a detectable respiration-deficient phenotype. We have characterized the respiration-deficient cox17 mutants and found in addition to the expected cytochrome oxidase deficiency, a specific lack of Cox2p and the presence of a misassembled cytochrome oxidase in a subset of mutants. These results suggest that Cox17p is involved upstream of Sco1p in delivering copper specifically to subunit 2 of cytochrome oxidase and predict the existence of a subunit 1-specific copper chaperone.  相似文献   

12.
Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.  相似文献   

13.
Deficiencies in cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, are most often caused by an inability to complete assembly of the enzyme. Pathogenic mutations in SCO2, which encodes a cytochrome oxidase assembly factor, were recently described in several cases of fatal infantile cardioencephalomyopathy. To determine the molecular etiology of these disorders, we describe the generation and characterization of the parallel mutations in the homologous yeast SCO1 gene. We show that the E155K yeast sco1 mutant is respiration-competent, whereas the S240F mutant is not. Interestingly, the S240F mutation allows partial but incorrect assembly of cytochrome oxidase, as judged by an altered cytochrome aa(3) peak. Immunoblot analysis reveals a specific absence of subunit 2 from the cytochrome oxidase in this mutant. Taken together, our data suggest that Sco1p provides copper to the Cu(A) site on subunit 2 at a step occurring late in the assembly pathway. This is the first instance of a yeast cytochrome oxidase assembly mutant that is partially assembled. The S240F mutant also represents a powerful new tool with which to elucidate further steps in the cytochrome oxidase assembly pathway.  相似文献   

14.
Human Cox17 is a key mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy transducing respiratory chain. A structural and dynamical characterization of human Cox17 in its various functional metallated and redox states is presented here. The NMR solution structure of the partially oxidized Cox17 (Cox17(2S-S)) consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds involving Cys(25)-Cys(54) and Cys(35)-Cys(44), preceded by a flexible and completely unstructured N-terminal tail. In human Cu(I)Cox17(2S-S) the copper(I) ion is coordinated by the sulfurs of Cys(22) and Cys(23), and this is the first example of a Cys-Cys binding motif in copper proteins. Copper(I) binding as well as the formation of a third disulfide involving Cys(22) and Cys(23) cause structural and dynamical changes only restricted to the metal-binding region. Redox properties of the disulfides of human Cox17, here investigated, strongly support the current hypothesis that the unstructured fully reduced Cox17 protein is present in the cytoplasm and enters the intermembrane space (IMS) where is then oxidized by Mia40 to Cox17(2S-S), thus becoming partially structured and trapped into the IMS. Cox17(2S-S) is the functional species in the IMS, it can bind only one copper(I) ion and is then ready to enter the pathway of copper delivery to cytochrome c oxidase. The copper(I) form of Cox17(2S-S) has features specific for copper chaperones.  相似文献   

15.
The copper metallochaperone Cox17 is proposed to shuttle Cu(I) ions to the mitochondrion for the assembly of cytochrome c oxidase. The Cu(I) ions are liganded by cysteinyl thiolates. Mutational analysis on the yeast Cox17 reveals three of the seven cysteinyl residues to be critical for Cox17 function, and these three residues are present in a Cys-Cys-Xaa-Cys sequence motif. Single substitution of any of these three cysteines with serines results in a nonfunctional cytochrome oxidase complex. Cells harboring such a mutation fail to grow on nonfermentable carbon sources and have no cytochrome c oxidase activity in isolated mitochondria. Wild-type Cox17 purified as untagged protein binds three Cu(I) ions/molecule. Mutant proteins lacking only one of these critical Cys residues retain the ability to bind three Cu(I) ions and are imported within the mitochondria. In contrast, Cox17 molecules with a double Cys --> Ser mutation exhibit no Cu(I) binding but are still localized to the mitochondria. Thus, mitochondrial uptake of Cox17 is not restricted to the Cu(I) conformer of Cox17. COX17 was originally cloned by virtue of complementation of a mutant containing a nonfunctional Cys --> Tyr substitution at codon 57. The mutant C57Y Cox17 fails to accumulate within the mitochondria but retains the ability to bind three Cu(I) ions. A C57S Cox17 variant is functional, and a quadruple Cox17 mutant with C16S/C36S/C47S/C57S substitutions binds three Cu(I) ions. Thus, only three cysteinyl residues are important for the ligation of three Cu(I) ions. A novel mode of Cu(I) binding is predicted.  相似文献   

16.
Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX(9)C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.  相似文献   

17.
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long–Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS–PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.  相似文献   

18.
Lode A  Kuschel M  Paret C  Rödel G 《FEBS letters》2000,485(1):19-24
Yeast mitochondrial Sco1p is required for the formation of a functional cytochrome c oxidase (COX). It was suggested that Sco1p aids copper delivery to the catalytic center of COX. Here we show by affinity chromatography and coimmunoprecipitation that Sco1p interacts with subunit Cox2p. In addition we provide evidence that Sco1p can form homomeric complexes. Both homomer formation and binding of Cox2p are neither dependent on the presence of copper nor affected by mutations of His-239, Cys-148 or Cys-152. These amino acids, which are conserved among the members of the Sco1p family, have been suggested to act in the reduction of the cysteines in the copper binding center of Cox2p and are discussed as ligands for copper.  相似文献   

19.
20.
The present studies were undertaken to further characterize the properties of Sco1p, a constituent of the mitochondrial inner membrane implicated in copper transfer to cytochrome oxidase. We report a procedure capable of yielding Sco1p of >95% purity. Sco1p has been purified from strains of Saccharomyces cerevisiae that overexpress the protein. The amino-terminal sequence of purified Sco1p indicates that the first 40 amino acids of the primary translation product constitute a mitochondrial targeting sequence that is proteolytically cleaved during import. We estimate that Sco1p constitutes 0.08% total mitochondrial proteins in wild type yeast and 5% in the transformant used for the purification. Sco1p contains approximately 1 mol of copper/mol protein. The copper is not removed by the treatment of Sco1p with EDTA, indicating that it is bound with high affinity. Purified Sco1p sediments identical to Sco1p in crude extracts of mitochondria from wild type yeast or from a strain transformed with SCO1 on a high copy plasmid. Native Sco1p has an estimated mass of 88 kDa, suggesting that it is a homotrimer. Sco1p expressed as a soluble protein lacking the internal 17 amino acids of the membrane-anchoring domain has been localized in the matrix. The protein has also been targeted to the intermembrane space. Neither soluble matrix nor intermembrane-localized Sco1p is able to complement a sco1 mutant, suggesting that only the membrane form with the carboxyl-terminal domain facing the intermembrane space is able to exert its normal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号