首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   

2.
Omega- and omega-1 hydroxylations are the major pathways by which arachidonic acid is metabolized in cortical and outer medullary microsomes of rat and rabbit kidneys. It is a cytochrome P450-dependent oxidation leading to the formation of 20-hydroxy- and 19-hydroxyeicosatetraenoic acids. In this study, we compared the effects of the synthetically prepared omega- and omega-1 metabolites of arachidonic acid on the activity of the renal Na+-K+-ATPase partially purified from rat renal cortical microsomes. 19(S)-hydroxyeicosatetraenoic acid caused a dose related stimulation of Na+-K+-ATPase activity with an EC50 of 3 x 10(-7) M. In contrast, neither 19(R)-hydroxyeicosatetraenoic acid, 20-hydroxyeicosatetraenoic acid nor arachidonic acid at 10(-6) M had any effect on Na+-K+-ATPase activity. In the same preparation, ouabain at 10(-3) M and 12(R)-hydroxyeicosatetraenoic acid at 10(-6) M inhibited the enzyme activity by 75% and 60%, respectively. We conclude that 19(S)-hydroxyeicosatetraenoic acid is a specific stimulator of renal Na+-K+-ATPase. Therefore, the formation of 19(S)-hydroxyeicosatetraenoic acid by renal cortical cytochrome P450 omega-1-hydroxylase may contribute to the regulation of renal function by regulating Na+-K+-ATPase which is essential for transtubular transport processes.  相似文献   

3.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

4.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

5.
6.
The Na+-K+-ATPase and its regulation is important for maintaining membrane potential and transmembrane Na(+) gradient in all skeletal muscle cells and thus is essential for cell survival and function. In our previous study, cyclic stretch activated the Na pump in cultured skeletal muscle cells. Presently, we investigated whether this stimulation was the result of translocation of Na+-K+-ATPase from endosomes to the plasma membrane, and also evaluated the role of phosphatidylinositol 3-kinase (PI 3-kinase), the activation of which initiated vesicular trafficking and targeting of proteins to specific cell compartments. Skeletal muscle cells were stretched at 25% elongation continuous for 24h using the Flexercell Strain Unit. The plasma membrane and endosome fractions were isolated and Western blotted to localize the Na+-K+-ATPase alpha1- and alpha2-subunit protein. The results showed stretch increased Na+-K+-ATPase alpha1- and alpha2-subunit protein expression in plasma membrane fractions and decreased it in endosomes. The alpha2-subunit had a more dynamic response to mechanical stretch. PI 3-kinase inhibitors (LY294002) blocked the stretch-induced translocation of the Na+-K+-ATPase alpha2-subunit, while LY294002 had no effect on the transfer of alpha1-subunit. We concluded that cyclic stretch mainly stimulated the translocation of the alpha2-subunit of Na+-K+-ATPase from endosomes to the plasma membrane via a PI 3-kinase-dependent mechanism in cultured skeletal muscle cells in vitro, which in turn increased the activity of the Na pump.  相似文献   

7.
cAMP and dexamethasone are known to modulate Na+ transport in epithelial cells. We investigated whether dibutyryl cAMP (DBcAMP) and dexamethasone modulate the mRNA expression of two key elements of the Na+ transport system in isolated rat alveolar epithelial cells: alpha-, beta-, and gamma-subunits of the epithelial Na+ channel (ENaC) and the alpha1- and beta1-subunits of Na+-K+-ATPase. The cells were treated for up to 48 h with DBcAMP or dexamethasone to assess their long-term impact on the steady-state level of ENaC and Na+-K+-ATPase mRNA. DBcAMP induced a twofold transient increase of alpha-ENaC and alpha1-Na+-K+-ATPase mRNA that peaked after 8 h of treatment. It also upregulated beta- and gamma-ENaC mRNA but not beta1-Na+-K+-ATPase mRNA. Dexamethasone augmented alpha-ENaC mRNA expression 4.4-fold in cells treated for 24 h and also upregulated beta- and gamma-ENaC mRNA. There was a 1.6-fold increase at 8 h of beta1-Na+-K+-ATPase mRNA but no significant modulation of alpha1-Na+-K+-ATPase mRNA expression. Because DBcAMP and dexamethasone did not increase the stability of alpha-ENaC mRNA, we cloned 3.2 kb of the 5' sequences flanking the mouse alpha-ENaC gene to study the impact of DBcAMP and dexamethasone on alpha-ENaC promoter activity. The promoter was able to drive basal expression of the chloramphenicol acetyltransferase (CAT) reporter gene in A549 cells. Dexamethasone increased the activity of the promoter by a factor of 5.9. To complete the study, the physiological effects of DBcAMP and dexamethasone were investigated by measuring transepithelial current in treated and control cells. DBcAMP and dexamethasone modulated transepithelial current with a time course reminiscent of the profile observed for alpha-ENaC mRNA expression. DBcAMP had a greater impact on transepithelial current (2.5-fold increase at 8 h) than dexamethasone (1.8-fold increase at 24 h). These results suggest that modulation of alpha-ENaC and Na+-K+-ATPase gene expression is one of the mechanisms that regulates Na+ transport in alveolar epithelial cells.  相似文献   

8.
9.
Erythrocytes of diabetic subjects (non-insulin dependent) were found to have eight- to ten-fold higher levels of endogenously formed thiobarbituric acid reactive malonyldialdehyde (MDA), thirteen-fold higher levels of phospholipid-MDA adduct, 15-20% reduced Na(+)-K(+)-ATPase activity with unchanged Ca+2-ATPase activity, as compared with the erythrocytes from normal healthy individuals. Incubation of normal erythrocytes with elevated concentrations (15-35 mM) of glucose, similar to that present in diabetic plasma, led to the increased lipid peroxidation, phospholipid-MDA adduct formation, reduction of Na(+)-K(+)-ATPase (25-50%) and Ca+2-ATPase (50%) activities. 2-doxy-glucose was 80% as effective as glucose in the lipid peroxidation and lipid adduct formation. However, other sugars, such as fructose, galactose, mannose, fucose, glucosamine and 3-O-methylmannoside, and sucrose, tested at a concentration of 35 mM, resulted in reduced (20-30%) lipid peroxidation without the formation of lipid-MDA adduct. Kinetic studies show that reductions in Na(+)-K(+)-ATPase and Ca+2-ATPase activities precede the lipid peroxidation as the enzyme inactivation occur within 30 min of incubation of erythrocytes with high concentration (15-35 mM) of glucose, while lipid peroxidation product, MDA appears at 4 hr and lipid-MDA adducts at 8 hr. The lipoxygenase pathway inhibitors, 5,8,11-eicosatriynoic acid and Baicalein (5,6,7-trihydroxyflavone), reduced the glucose-induced lipid peroxidation by 30% and MDA-lipid adduct formation by 26%. Indomethacin, a cyclooxygenase pathway inhibitor, had no discernible effect on the lipid peroxidation in erythrocytes. However, the inhibitors of lipid peroxidation, 3-phenylpyrazolidone, metyrapone, and the inhibitors of lipoxygenase pathways did not ablate the glucose-induced reduction of Na(+)-K(+)-ATPase and Ca+2-ATPase activities in erythrocytes. Erythrocytes produce 15-HETE (15-hydroxy-eicosatetraenoic acid), which is augmented by glucose. These results suggest that the formation of lipoxygenase metabolites potentiate the glucose-induced lipid peroxidation and that the inactivation of Na(+)-K(+)-ATPase and Ca+2-ATPase occurs as a result of non-covalent interaction of glucose with these enzymes.  相似文献   

10.
Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.  相似文献   

11.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

12.
The activity of the Na+-K+-ATPase along the intestinal mucosa of the gilthead seabream has been examined. Under optimal assay conditions, found at 35 degrees C, pH 7.5, 2-5 mM MgCl2, 5 mM ATP, 10 mM K+ and 200 mM Na+, maximal Na+-K+-ATPase activities were found in the microsomal fraction of pyloric caeca (PC) and anterior intestine (AI), which were more than two-fold the activity measured in the microsomes from the posterior intestine (PI). Na+-K+-ATPase activities from PC, AI and PI displayed similar pH dependence, optimal Mg2+/ATP and Na+/K+ ratios, affinities for Mg2+ and ATP, and inhibition by vanadate. However, considerable differences regarding sensitivity to ouabain, inhibition by calcium and responses to ionic strength were observed between segments. Thus, Na+-K+-ATPase activity from the AI was found to be ten-fold more sensitive to ouabain and calcium than the enzyme from the PC and PI and displayed distinct kinetic behaviours with respect to Na+ and K+, compared to PC and PI. Analysis of the data from the AI revealed the presence of two Na+-K+-ATPase activities endowed with distinguishable biochemical characteristics, suggesting the involvement of two different isozymes. Regional differences in Na+-K+-ATPase activities in the intestine of the gilthead seabream are compared with literature data on Na+-K+-ATPase isozymes and discussed on the basis of the physiological differences between intestinal regions.  相似文献   

13.
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.  相似文献   

14.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

15.
The present study evaluated the hypothesis of whether increases in vectorial Na+ transport translate into facilitation of Na+-dependent L-DOPA uptake in cultured renal epithelial tubular cells. Increases in vectorial Na+ transport were obtained in opossum kidney (OK) cells engineered to overexpress Na+-K+-ATPase after transfection of wild type OK cells with the rodent Na+-K+-ATPase alpha1 subunit. The most impressive differences between wild type and transfected OK cells are that the latter overexpressed Na+-K+-ATPase accompanied by an increased activity of the transporter. Non-linear analysis of the saturation curve for l-DOPA uptake revealed a Vmax value (in nmol mg protein/6 min) of 62 and 80 in wild type and transfected cells, respectively. The uptake of a non-saturating concentration (0.25 microM) of [14C]-L-DOPA in OK-WT cells was not affected by Na+ removal, whereas in OK-alpha1 cells accumulation of [14C]-L-DOPA was clearly dependent on the presence of extracellular Na+. When Na+ was replaced by choline, the inhibitory profile of neutral l-amino acids, but not of basic and acidic amino acids, upon [14C]-L-DOPA uptake in both cell types, was significantly greater than that observed in the presence of extracellular Na+. It is concluded that enhanced ability of OK cells overexpressing Na+-K+-ATPase to translocate Na+ from the apical to the basal cell side correlates positively with their ability to accumulate L-DOPA, which is in agreement with the role of Na+ in taking up the precursor of renal dopamine.  相似文献   

16.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   

17.
A quick assay for Na+-K+-AtPase specific activity   总被引:1,自引:0,他引:1  
The method describes a simultaneous determination of inorganic phosphate (Pi) and protein content from a reaction mixture used for assay of adult rat cerebrocortical synaptosomal membrane Na+-K+-ATPase specific activity. The present method is more convenient, accurate and quicker compared to the existing methods for the determination of Na+-K+-ATPase activity. It also eliminates the possible errors in protein estimation by other classical methods in brain, which have a high lipid content.  相似文献   

18.
I Sall  P Metais  G Ferard 《Enzyme》1977,22(3):158-165
Subcellular fraction (brush border, mitochondria, microsomes and plasma membranes) are isolated from the rat intestinal epithelial cells. A comparison was made between the effect of cold storage, freeze-thawing, heating and of some chemicals (DMSO, DTT, glycerol, sucrose) on the stability of Mg2+ and (Na+-K+) dependent ATPases in these fractions in order to determine possible difference linked to the localization in the enterocyte. Enzymatic activities were found more stable at -20 degrees C than at +4 degrees C. Microsomal (Na+-K+)-ATPase increased in activity until the 8th day, then declined. Brush border (Na+-K+)-ATPase was the least resistant of all fractions. For Mg2+-ATPase, that from mitochondria was that had lost much more activity (84%) in 15 days at +4 degrees C. With freeze-thawing there was a comparable decrease in all activities (20-35%). by heating between 35 and 60 degrees C, Mg2+-ATPase was shown to be more heat resistant than (Na+-K+)-ATPase. The addition of some stabilizing chemicals (DMSO, glycerol, sucrose) improved the heat stability of the two enzymes: better results were obtained with glycerol for Mg2+-ATPase and sucrose for (Na+-K+)-ATPase. These differences might be due to the compositon in membraine lipids or to the nature of the enzymes studied.  相似文献   

19.
Skeletal muscle constitutes the major target organ for the thermogenic action of thyroid hormone. We examined the possible relation between energy expenditure (EE), thyroid status, and the contents of Ca2+-ATPase and Na+-K+-ATPasein human skeletal muscle. Eleven hyperthyroid patients with Graves' disease were studied before and after medical treatment with methimazole and compared with eight healthy subjects. Muscle biopsies were taken from the vastus lateralis muscle, and EE was determined by indirect calorimetry. Before treatment, the patients had two- to fivefold elevated total plasma T3 and 41% elevated EE compared with when euthyroidism had been achieved. In hyperthyroidism, the content of Ca2+-ATPase was increased: (mean +/- SD) 6,555 +/- 604 vs. 5,212 +/- 1,580 pmol/g in euthyroidism (P = 0.04) and 4,523 +/- 1,311 pmol/g in healthy controls (P = 0.0005). The content of Na+-K+-ATPase showed 89% increase in hyperthyroidism: 558 +/- 101 vs. 296 +/- 34 pmol/g (P = 0.0001) in euthyroidism and 278 +/- 52 pmol/g in healthy controls (P < 0.0001). In euthyroidism, the contents of both cation pumps did not differ from those of healthy controls. The Ca2+-ATPase content was significantly correlated to plasma T3 and resting EE. This provides the first evidence that, in human skeletal muscle, the capacity for Ca2+ recycling and active Na+-K+ transport are correlated to EE and thyroid status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号