首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.  相似文献   

2.
Nitric oxide (NO) is implicated in the pathogenesis of lung inflammation and edema. In this study, the effects of nitric oxide (NO)-donors on membrane water permeability and cell surface expression of aquaporin-5 (AQP5) in mouse lung epithelial cells were examined. NO-donors, GSNO and NOC-18 decreased cell surface expression of AQP5, concentration- and time-dependently, whereas they did not affect the amount of AQP5 in whole cell lysates. The membrane water permeability of cells was also decreased by treatment with NO-donors. The decrease in cell surface AQP5 by NO was abolished by simultaneous treatment with methyl-beta-cyclodextrin, but not with ODQ, an inhibitor of the cGMP-dependent pathway. In addition, immunocytochemistry with anti-AQP5 indicated that NO changed AQP5 localization from the plasma membrane to the intracellular fraction. These data indicate that NO stimulates AQP5 internalization from the plasma membrane through a cGMP-independent mechanism, and decreases membrane water permeability.  相似文献   

3.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (CatFr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

4.
Retinoids have been implicated in the control of cell proliferation, differentiation, and developmental processes. We report here that aquaporin-1 (AQP1) is specifically induced by retinoic acid (RA) in human erythroleukemia HEL cells. Both all-trans-RA (ATRA) and 9-cis-RA (9CRA) strongly induced the AQP1 mRNA and protein in a dose-dependent manner. AQP1 protein was mainly expressed in plasma membrane in cells induced by RAs. To identify the RA response element (RARE) in the human AQP1 promoter, the 5(')-flanking region of AQP1 promoter was isolated and transient transfection experiment in HEL cells was performed. Deletion analysis of the AQP1 promoter revealed that one putative DR5-like RARE with five spaces was located in the region from -2218 to -2202; AGGGCAgggacAGGTGA. Electrophoretic mobility shift assay (EMSA) experiment demonstrated that two slowly migrated complexes (C1 and C2) capable of binding the RARE sequence were present in nuclear extracts prepared from cells and the complex C1 was strongly increased in nuclear extracts by RA stimulation. The complexes C1 and C2 were significantly abolished by an excess unlabeled probe. These results indicate that RAs strongly stimulate the human AQP1 gene expression through the RARE and define a novel role in the regulation of erythropoiesis.  相似文献   

5.
Relationships between insertion/deletion (Ins/Del) polymorphisms of the bovine prion protein gene (PRNP) promoter and bovine spongiform encephalopathy (BSE) susceptibility have been reported. Our previous study has shown that polymorphisms of −6C → T included in the specific protein 1 (Sp1) site in the 5′-flanking region of bovine PRNP influence the promoter activity of bovine PRNP. The present study shows that 12 and 23 bp Ins/Del polymorphisms in the upstream region and an additional polymorphism (−47C → A) in the Sp1 binding site coordinately affect the promoter activity. Reporter gene assays demonstrated that the bovine PRNP promoter containing −47A and 23 bp Del/12 bp Ins or 23 bp Ins/12 bp Ins showed lower promoter activity compared with other haplotypes (23 bp Del/12 bp Ins or 23 bp Ins/12 bp Del with −47C) or the wild-type haplotype (23 bp Del/12 bp Del with −47C). Furthermore, gel shift assays showed that the binding activity of Sp1 to the PRNP promoter was influenced by both polymorphisms with corresponding effects on the promoter activity. The coordinate regulation of the bovine PRNP promoter suggests the two Sp1 binding site polymorphisms control Sp1 binding to the PRNP promoter and its activity.  相似文献   

6.
7.
8.
Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins.  相似文献   

9.
Ticks undergo tremendous osmoregulatory stress as they take on up to 100 times their body weight in blood, returning about 75% of the ingested water and ions via their saliva into the host. We postulated that water channels, or aquaporins, involved in this mass water transport might be good targets for acaricide development. An aquaporin (IrAQP1) identified in the sheep tick, Ixodes ricinus, was present only in tissues involved in mass water flux, namely the gut, rectal sac and especially abundant in the salivary glands. IrAQP1 was localised by in situ hybridisation in specific cell and acini types, possibly Type III acini, but absent from the type I acini that are responsible for rehydration of ticks in the non-feeding phase. Gene knockdown of IrAQP1 in isolated salivary glands completely inhibited dopamine-stimulated secretion. Further, IrAQP1 knockdown adult females had 50% reduced body weight gains over the first 5 days feeding on an artificial feeding apparatus and 21% at the point of engorgement on hosts. Haemolymph osmolarity was increased in the IrAQP1-knockdown ticks. Importantly, the blood volume ingested per body weight was reduced by 30%. Overall, it would appear that water passage from the gut to the saliva was disrupted and tick guts were simply too “full” to ingest more blood. However, double-stranded RNA interference of IrAQP1 did not affect mortality of the ticks which successfully fed to detachment at day 9. Overall, our data indicate that IrAQP1 plays a pivotal role in blood meal water handling through the gut and salivary gland, and although its disruption by double-stranded RNA interference dramatically affects feeding performance, ticks remained feeding on the host with subsequent potential pathogen transmission and, therefore, IrAQP1 is not a suitable candidate target for tick control.  相似文献   

10.
11.
12.
Developmentalexpression of aquaporin water transport proteins is not well understoodin respiratory tract or secretory glands; here we define aquaporinprotein ontogeny in rat. Expression of aquaporin-3 (AQP3), AQP4, andAQP5 proteins occurs within 2 wk after birth, whereas AQP1 firstappears before birth. In most tissues, aquaporin protein expressionincreases progressively, although transient high-level expression isnoted in distal lung (AQP4 at postnatal day+2) and trachea (AQP5 at postnatalday +21 and AQP3 at postnatal day+42). In mature animals, AQP5 is abundant in distallung and salivary glands, AQP3 and AQP4 are present in trachea, andAQP1 is present in all of these tissues except salivary glands.Surprisingly, all four aquaporin proteins are highly abundant innasopharynx. Unlike AQP1, corticosteroids did not induce expression ofAQP3, AQP4, or AQP5 in lung. Our results seemingly implicate aquaporinsin proximal airway humidification, glandular secretion, and perinatalclearance of fluid from distal airways. However, the studies underscorea need for detailed immunohistochemical characterizations anddefinitive functional studies.

  相似文献   

13.
14.
Aquaporin-5 (AQP5), an apical plasma membrane (APM) water channel in salivary glands, lacrimal glands, and airway epithelium, has an important role in fluid secretion. M3 muscarinic acetylcholine receptor (mAChR)-induced changes in AQP5 localization in rat parotid glands were investigated with immunofluorescence or immunoelectron microscopy, detergent solubility, and gradient density floatation assays. Confocal microscopy revealed AQP5 localization in intracellular vesicles of interlobular duct cells in rat parotid glands and AQP5 trafficking to the APM 10 min after injection of the mAChR agonist cevimeline. Conversely, 60 min after injection, there was a diffuse pattern of AQP5 staining in the cell cytoplasm. The calcium ionophore A-23187 mimicked the effects of cevimeline. Immunoelectron microscopic studies confirmed that cevimeline induced AQP5 trafficking from intracellular structures to APMs in the interlobular duct cells of rat parotid glands. Lipid raft markers flotillin-2 and GM1 colocalized with AQP5 and moved with AQP5 in response to cevimeline. Under control conditions, the majority of AQP5 localized in the Triton X-100-insoluble fraction and floated to the light-density fraction on discontinuous density gradients. After 10-min incubation of parotid tissue slices with cevimeline or A-23187, AQP5 levels decreased in the Triton X-100-insoluble fraction and increased in the Triton X-100-soluble fraction. Thus AQP5 localizes in the intracellular lipid rafts, and M3 mAChR activation induces AQP5 trafficking to the APM with lipid rafts via intracellular Ca2+ signaling and induces AQP5 dissociation from lipid rafts to nonrafts on the APM in the interlobular duct cells of rat parotid glands. translocation; aquaporin-5  相似文献   

15.
16.
17.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号