首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Abiotic environmental stresses can give rise to morphological, biochemical and molecular changes that negatively affect plant growth and productivity. Among these stresses, soil salinity is the major threat. To deal and control effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. In this regard halophytes (salt tolerant plants) can provide superior models for the study of salt stress defense parameters compared to salt sensitive species (glycophytes). Halophytes use highly developed, complex systems to tolerate salinity by maintaining a low cytosolic Na+/K+ ratio, sequestration of Na+ into vacuoles that then provides the osmotic potential sustaining water influx. Under low intensity stress conditions that moderately and/or transiently affect ion imbalance, the set of responses all plants initiate will be mostly to engage measures that assure ion balance. High salinity, especially over a prolonged time period, will challenge plant survival, which then requires different strategies that employ a variety of mechanisms. Plasticity and connectivity of these diverse mechanisms is engrained in species- and family-specific evolutionary history and their genetic complexity. Highlighting differences in the genetic and biochemical makeup between glycophytes and halophytes allows for comparisons between their approaches towards high salinity. This review provides a brief overview about different strategies and mechanism used by plants to avoid or confine adverse effects of high salinity.  相似文献   

3.
4.
5.
6.
Evidence is accumulating in favor of a linkage at the cellular level between various abiotic stresses. We conducted a study to evaluate the effect of water stress on the heat tolerance of zonal geraniums, Pelargonium × hortorum cv. Evening Glow. Water stress was imposed by withholding irrigation until pots reached 30% (by weight) of well‐watered controls, and by maintaining the pot weight by additions of water for another 7 days. Leaf xylem water potential (XWP, MPa), relative water content (RWC. %), and heat‐stress tolerance (HST; LT50, defined as the temperature causing half‐maximal % injury based on electrolyte leakage) were measured in control, stressed, and recovered plants. Proteins were extracted from the leaves following the above treatments, and SDS‐PAGE and immunoblotting were performed by using standard procedures. Immunoblots were probed with antibodies to dehydrin and 70‐kDa heat shock cognate (HSC70) proteins. Data indicate that XWP and RWC, respectively, were −0.378 MPa and 92.3% for control plants and −0.804 MPa and 78.6% for stressed plants. Water‐stressed plants exhibited a significant increase in HST compared to control (LT50 of 55°C vs 51°C). Water‐stress‐induced HST was not due to heat acclimation (leaf warming in stressed plants). Data also indicate that water‐stress treatment did not increase freezing tolerance of geranium leaves. Increased HST was associated with the accumulation of several heat‐stable, dehydrin proteins (25–60 kDa), and both cytosolic and ER luminal (BiP) HSC70 proteins. Leaf XWP, RWC, and HST reversed to control levels concomitant with the disappearance/reduction of dehydrins and HSC70 proteins in water‐stress‐relieved plants. The possibility of a cellular linkage between water stress and heat‐stress tolerance is discussed.  相似文献   

7.
A serious factor limiting the engineering of stress tolerance has been our ignorance about the function of stress-induced genes. A stress-activated novel aldose-aldehyde reductase was cloned from alfalfa. The ectopic expression of this gene in tobacco resulted in tolerance to oxidative stress and dehydration. Physiological analysis suggested that aldose reductase probably functions by reducing the level of reactive aldehydes. This provides a promising perspective for the development of crop plants with improved stress tolerance.  相似文献   

8.
Global warming poses a serious threat to crops. Calcium‐dependent protein kinases (CDPKs)/CPKs play vital roles in plant stress responses, but their exact roles in plant thermotolerance remains elusive. Here, we explored the roles of heat‐induced ZmCDPK7 in thermotolerance in maize. ZmCDPK7‐overexpressing maize plants displayed higher thermotolerance, photosynthetic rates, and antioxidant enzyme activity but lower H2O2 and malondialdehyde (MDA) contents than wild‐type plants under heat stress. ZmCDPK7‐knockdown plants displayed the opposite patterns. ZmCDPK7 is attached to the plasma membrane but can translocate to the cytosol under heat stress. ZmCDPK7 interacts with the small heat shock protein sHSP17.4, phosphorylates sHSP17.4 at Ser‐44 and the respiratory burst oxidase homolog RBOHB at Ser‐99, and upregulates their expression. Site‐directed mutagenesis of sHSP17.4 to generate a Ser‐44‐Ala substitution reduced ZmCDPK7's enhancement of catalase activity but enhanced ZmCDPK7's suppression of MDA accumulation in heat‐stressed maize protoplasts. sHSP17.4, ZmCDPK7, and RBOHB were less strongly upregulated in response to heat stress in the abscisic acid‐deficient mutant vp5 versus the wild type. Pretreatment with an RBOH inhibitor suppressed sHSP17.4 and ZmCDPK7 expression. Therefore, abscisic acid‐induced ZmCDPK7 functions both upstream and downstream of RBOH and participates in thermotolerance in maize by mediating the phosphorylation of sHSP17.4, which might be essential for its chaperone function.  相似文献   

9.
A simple method using the O2 electrode that allows examination of the response of respiration and photosynthesis in leaf slices or algae to anoxia and high light under different temperatures useful for the examination of the interactions among photosynthesis, photorespiration, and respiration is described. The method provides a quantifiable assessment of stress tolerance that also permits us to examine fundamental biochemically and genetically related responses involved in stress tolerance and the cooperation among organelles. Additionally, we demonstrated a role for compounds, such as $ {\text{NO}}^{{\text{ - }}}_{{\text{3}}} $ and oxaloacetate, as protective agents against photoinhibition, and we examined the role of dark adaptation in the activation of photosynthesis and $ {\text{NO}}^{{\text{ - }}}_{{\text{3}}} $ -dependent O2 oxygen evolution. A physiological and ecological role of a dark period (night) in stress tolerance is presented. Utilizing the method to follow changes in such metabolic activities as protein synthesis, protein conformation states, enzymes activity, carbon metabolism, and gene expression at different points during the treatments will be educational.  相似文献   

10.
Plant Molecular Biology - Role of Rubisco Activase in imparting thermotolerance to the photosynthetic apparatus under high temperature. Thus, to improve the grain filling, we need to fine tune...  相似文献   

11.
This study evaluated the influence of Azospirillum lipoferum on the growth of Myracroduon urundeuva (Anacardiaceae) plants under drought stress, by means of biometric, physical–chemical and biochemical parameters. The association of A. lipoferum with the roots of the plants provided increases of 30% root length, 50% root dry weight, 34% shoot dry weight and 10% soluble protein content. The inoculated plants still maintained 5% higher leaf water potential than those not inoculated and lower membrane damage. Furthermore, the inoculated plants shown less leaf fall and dark green leaves, confirmed by maintenance of the highest levels of chlorophyl a, b and total. On the other hand, superoxide dismutase activity was significantly lower in the inoculated plants, possibly due to the induction of a non-enzymatic protective feature. In this way, the inoculation of PGPR in M. urundeuva can be an alternative for the production of plants that are more tolerant to drought stress.  相似文献   

12.
Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2−/− MEFs compared with RSK2+/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2+/+ MEFs. In contrast, GSK3β−/− MEFs induced the cell proliferation compared with GSK3β+/+ MEFs. Importantly, RSK2−/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2+/+ MEFs. The sub-G1 induction in RSK2−/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2+/+ MEFs. Notably, return back of RSK2 into RSK2−/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2−/−/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.  相似文献   

13.
Chen  Taixiang  White  James F.  Li  Chunjie  Nan  Zhibiao 《Plant and Soil》2021,463(1-2):77-95
Plant and Soil - We investigated morphological variations in podzols caused by changes in soil porosity and permeability upon the growth of large tree-roots in a tropical barrier island (Ilha...  相似文献   

14.
Nitric oxide (NO), a non-charged, small, gaseous free-radical, is a signaling molecule in all plant cells. Several studies have proposed multifarious physiological roles for NO, from seed germination to plant maturation and senescence. Nitric oxide is thought to act as an antioxidant, quenching ROS during oxidative stress and reducing lipid peroxidation. NO also mediates photosynthesis and stomatal conductance and regulates programmed cell death, thus providing tolerance to abiotic stress. In mitochondria, NO participates in the electron transport pathway. Nitric oxide synthase and nitrate reductase are the key enzymes involved in NO-biosynthesis in aerobic plants, but non-enzymatic pathways have been reported as well. Nitric oxide can interact with a broad range of molecules, leading to the modification of protein activity, GSH biosynthesis, S-nitrosylation, peroxynitrite formation, proline accumulation, etc., to sustain stress tolerance. In addition to these interactions, NO interacts with fatty acids to form nitro-fatty acids as signals for antioxidant defense. Polyamines and NO interact positively to increase polyamine content and activity. A large number of genes are reprogrammed by NO; among these genes, proline metabolism genes are upregulated. Exogenous NO application is also shown to be involved in salinity tolerance and/or resistance via growth promotion, reversing oxidative damage and maintaining ion homeostasis. This review highlights NO-mediated salinity-stress tolerance in plants, including NO biosynthesis, regulation, and signaling. Nitric oxide-mediated ROS metabolism, antioxidant defense, and gene expression and the interactions of NO with other bioactive molecules are also discussed. We conclude the review with a discussion of unsolved issues and suggestions for future research.  相似文献   

15.
16.
Despite the crucial role of carbon transport in whole plant physiology and its impact on plant–environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem–phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.  相似文献   

17.
Qualitative and quantitative genetic analysis of life span in experimental adult animals predicts that resistance to stress and longevity are positively correlated, but such studies on field populations of animals are rare. We tested this hypothesis using dauer juveniles of 15 natural populations of the entomopathogenic nematode, Heterorhabditis bacteriophora, collected from diverse localities. Dauer juvenile longevity at 25 degrees C in autoclaved tap water and tolerance to major environmental stresses including heat (survival at 40 degrees C for 2 h), ultraviolet (UV) radiation (original virulence remaining after exposure to 302 nm UV for 5 min), hypoxia (survival at approximately 0% dissolved O2 at 25 degrees C for 96 h), and desiccation (survival in 25% glycerol at 25 degrees C for 72 h) differed significantly among populations. Intrinsic dauer juvenile longevity, defined as the number of weeks to 90% mortality (LT90) estimated using probit analysis of nematode survival data at 25 degrees C varied between 6 and 16 weeks among populations. Longevity was most strongly correlated with heat followed by UV and hypoxia tolerance, respectively, but showed no correlation with desiccation tolerance. The strong positive correlation of longevity with heat tolerance was further confirmed through principal components analysis which showed almost identical variance for heat and longevity. Among the stress factors, only UV tolerance was positively correlated with heat and hypoxia tolerance. Differences in longevity and stress tolerance in nematode populations isolated from a single 200 m2 grassland locality further support another hypothesis that population structure of heterorhabditid nematodes is highly fragmented, thus suggesting the existence of metapopulation dynamics.  相似文献   

18.
Proline has been recognized as a multi‐functional molecule, accumulating in high concentrations in response to a variety of abiotic stresses. It is able to protect cells from damage by acting as both an osmotic agent and a radical scavenger. Proline accumulated during a stress episode is degraded to provide a supply of energy to drive growth once the stress is relieved. Proline homeostasis is important for actively dividing cells as it helps to maintain sustainable growth under long‐term stress. It also underpins the importance of the expansion of the proline sink during the transition from vegetative to reproductive growth and the initiation of seed development. Its role in the reproductive tissue is to stabilize seed set and productivity. Thus, to cope with abiotic stress, it is important to develop strategies to increase the proline sink in the reproductive tissue. We give a holistic account of proline homeostasis, taking into account the regulation of proline synthesis, its catabolism, and intra‐ and intercellular transport, all of which are vital components of growth and development in plants challenged by stress.  相似文献   

19.
20.
Karrikins (KARs) are unique butenolides derived as a by‐product of incomplete combustion during wildfire. Some receptive plant species respond to KARs in the form of accelerated germination. These molecules originate from stress to mediate tolerance against different sub‐optimal conditions like oxidative stress, drought and low‐light intensity (shade stress). KARs promote seed germination, seedling establishment and ecological diversity by accelerating the abundance of selective communities of plants. The signaling pathway is closely related, yet unique from strigolactones (SLs). Due to the structural relatedness with SLs, KARs have potential roles in mediating abiotic stress tolerance in plants. In addition, the KAR directly/indirectly interact with crucial phytohormones like abscisic acid, gibberellic acid, auxins and ethylene. This article is a summarized update on KAR research in recent times. The exhaustive discussions would be beneficial for understanding the extraordinary strategy devised by nature to protect plants from stress using a molecule which is itself generated out of stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号