首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

2.
In Chlorella sorokiniana (211/8k), glucose-6 phosphate dehydrogenase (G6PDH—EC 1.1.1.49) activity is similar in both N-starved cells and nitrate-grown algae when expressed on a PCV basis. A single G6PDH isoform was purified from Chlorella cells grown under different nutrient conditions; the presence of a single G6PDH was confirmed by native gels stained for enzyme activity and by Western blots. The algal G6PDH is recognised only by antibodies raised against higher plants plastidic protein, but not by chloroplastic and cytosolic isoform-specific antisera. Purified G6PDH showed kinetic parameters similar to plastidic isoforms of higher plants, suggesting a different biochemical structure which would confer peculiar regulative properties to the algal G6PDH with respect to higher plants enzymes. The most remarkable property of algal G6PDH is represented by the response to NADPH inhibition. The algal enzyme is less sensitive to NADPH effects compared to higher plants G6PDH: KiNADPH is 103 μM for G6PDH from nitrogen-starved C. sorokiniana, similarly to root plastidic P2-G6PDH. In nitrate-grown C. sorokiniana the KiNADPH decreased to 48 μM, whereas other kinetic parameters remained unchanged. These results will allow further investigations in order to rule out possible modifications of the enzyme, and/or the expression of a different G6PDH isoform during nitrate assimilation.  相似文献   

3.
The effects of ammonium and glutamine supply on amino acid levels and the activity of glucose-6P dehydrogenase (G6PDH EC 1.1.1.49), the main regulated enzyme of the oxidative pentose phosphate pathway, were investigated in barley roots ( Hordeum vulgare cv. Alfeo). Feeding ammonium to barley plants increased the contents of glutamine, asparagine and G6PDH in roots. These effects were abolished by using inhibitors of glutamine synthetase. Glutamine-fed barley roots showed a similar increase in G6PDH activities to ammonium-fed plants. Two G6PDH enzymes (G6PDH 1 and 2) were partially purified and characterized from ammonium-fed and glutamine-fed roots. The isozymes had different pH optima and apparent Km values for glucose-6P. G6PDH 2 showed similar kinetic parameters to the G6PDH present in root extracts of barley grown without any nitrogen source, while G6PDH 1 exhibited different kinetic parameters, suggesting the appearance of a second G6PDH isoform in response to ammonium. Western blot analysis demonstrated the existence of two G6PDH subunits of different molecular mass in barley roots grown in the presence of ammonium or glutamine, while only one isoform could be detected in roots grown without any nitrogen source. The results suggest a primary role of ammonium and/or glutamine in the appearance of a novel G6PDH isoform; this enzyme (G6PDH 1) shows kinetic parameters similar to those measured previously for chloroplastic and plastidic isoforms and seems to be induced by changes in glutamine content or a related compound(s) in the roots.  相似文献   

4.
Chloroplasts or chromoplasts were purified from sweet-pepper (Capsicum annuum L. cv. Yolo Wonder) fruits and analysed with respect to their enzymic equipment, the transport properties across the envelope membrane, and for the presence of a functional oxidative pentose-phosphate pathway (OPPP). It was demonstrated that both types of plastid contain enzyme activities that allow glycolysis and OPPP. During the developmental conversion from chloroplasts to chromoplasts the activities of enzymes catalysing potentially rate-limiting reactions in glycolysis increased considerably. Most enzyme activities involved in the plastidic OPPP stayed constant or decreased during ripening, but transaldolase activity increased by more than 500%. To analyse whether pepper fruit chromoplasts are able to use exogenously supplied carbohydrates for the OPPP we measured the rate of 14CO2 release after application of radioactively labelled precursors. Isolated pepper fruit chromoplasts used exogenously supplied [U14C]glucose- 6-phosphate (Glc6P) as a precursor for the OPPP. The metabolic flux through this pathway was stimulated by the presence of additional compounds which require reducing equivalents for further conversion, e.g. nitrite, or 2-oxoglutarate plus glutamine. The [14C]Glc6P-driven OPPP in isolated chromoplasts exhibited saturation with rising concentrations of Glc6P, reaching highest rates at an external concentration of about 2 mM. Exogenously given [U14C]glucose 1-phosphate (Glc1P)′ did not lead to a release of 14CO2, indicating that this hexose phosphate is not taken up into the intact plastid. Using a proteoliposome system in which the envelope membrane proteins from sweet-pepper chromoplasts were functionally reconstituted we demonstrated that Glc6P is transported in counter-exchange with inorganic phosphate (Pi) or other phosphorylated intermediates. The Glc6P was taken up into proteoliposomes with an apparent K m of 0.34 mM. Surprisingly, in contrast to tomato fruit plastids, isolated chromoplasts from sweet-pepper fruits do not possess a phosphate translocator allowing the uptake of Glc1P. Rising exogenous concentrations of dihydroxyacetone phosphate strongly inhibited the metabolic flux through the OPPP. This observation is discussed with respect to the presence of two phosphate translocator proteins in the envelope of sweet-pepper chromoplasts and with respect to possible metabolic changes occurring in heterotrophic tissues during development. Received: 24 April 1997 / Accepted: 16 June 1997  相似文献   

5.
Evidence is provided for a close link between glutamate (Glu) synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) in barley ( Hordeum vulgare L. var. Alfeo) root plastids. A rapid procedure for isolating organelles gave yields of plastids of over 30%, 60% of which were intact. The formation of Glu by intact plastids fed with glutamine and 2-oxoglutarate, both substrates of glutamate synthase (GOGAT), depends on glucose-6-phosphate (Glc-6-P) supply. The whole process exhibited an apparent K(m Glc-6-P) of 0.45 mM and is abolished by azaserine, a specific inhibitor of GOGAT; ATP caused a decrease in the rate of Glu formation. Glucose and other sugar phosphates were not as effective in supporting Glu synthesis with respect to Glc-6-P; only ribose-5-phosphate, an intermediate of OPPP, supported rates equivalent to Glc-6-P. Glucose-6-phosphate dehydrogenase (Glc6PDH) rapidly purified from root plastids showed an apparent K(m Glc-6-P) of 0.96 mM and an apparent K(m NADP)(+) of 9 micro M. The enzyme demonstrated high tolerance to NADPH, exhibiting a K(i) (NADPH) of 58.6 micro M and selectively reacted with antibodies against potato plastidic, but not chloroplastic, Glc6PDH isoform. The data support the hypothesis that plastidic OPPP is the main site of reducing power supply for GOGAT within the plastids, and suggest that the plastidic OPPP would be able to sustain Glu synthesis under high NADPH:NADP(+) ratios even if the plastidic Glc6PDH may not be functioning at its highest rates.  相似文献   

6.
Wright DP  Huppe HC  Turpin DH 《Plant physiology》1997,114(4):1413-1419
Pyridine nucleotide pools were measured in intact plastids from roots of barley (Hordeum vulgare L.) during the onset of NO2- assimilation and compared with the in vitro effect of the NADPH/NADP ratio on the activity of plastidic glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from N-sufficient or N-starved roots. The NADPH/NADP ratio increased from 0.9 to 2.0 when 10 mM glucose-6-phosphate was supplied to intact plastids. The subsequent addition of 1 mM NaNO2 caused a rapid decline in this ratio to 1.5. In vitro, a ratio of 1.5 inactivated barley root plastid G6PDH by approximately 50%, suggesting that G6PDH could remain active during NO2- assimilation even at the high NADPH/NADP ratios that would favor a reduction of ferredoxin, the electron donor of NO2- reductase. Root plastid G6PDH was sensitive to reductive inhibition by dithiothreitol (DTT), but even at 50 mM DTT the enzyme remained more than 35% active. In root plastids from barley starved of N for 3 d, G6PDH had a substantially reduced specific activity, had a lower Km for NADP, and was less inhibited by DTT than the enzyme from N-sufficient root plastids, indicating that there was some effect of N starvation on the G6PDH activity in barley root plastids.  相似文献   

7.
Knight JS  Emes MJ  Debnam PM 《Planta》2001,212(4):499-507
We describe here the isolation and characterisation of the first full-length genomic clone encoding a plant glucose 6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) from Nicotiana tabacum L. cv Samsun. The gene was expressed in all tissues, including roots, leaves, stems and flowers. Comparison of the gene with other known plant G6PDH cDNAs grouped this sequence with plastidic isoforms. The protein, minus a putative plastidic transit sequence, was overexpressed in Escherichia coli as a glutathione S-transferase fusion protein. The resulting protein was shown to be immunologically related to the potato plastidic G6PDH. This suggests that the sequence described here codes for a plastidic isoform. Plastidic G6PDH mRNA was induced in both roots and leaves in response to KNO3, and the induction in roots was approximately 4 times the response seen in leaves. Sequence analysis of the 5′-untranslated region of the genomic clone indicated the presence of several NIT2 elements, which may contribute to the control of the expression of this gene. Plastidic G6PDH mRNA levels did not appear to respond to light. Received: 28 April 2000 / Accepted: 21 July 2000  相似文献   

8.
9.
Biosynthesis of guanosine 5′-diphosphate-l-fucose (GDP-l-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP+-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-l-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-l-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-l-fucose production. However, GDP-l-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-l-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-l-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-l-fucose concentration of 235.2 ± 3.3 mg l−1, corresponding to a 21% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-l-fucose production in recombinant E. coli.  相似文献   

10.
Porchia AC  Curatti L  Salerno GL 《Planta》1999,210(1):34-40
The pathway of sucrose metabolism in cyanobacteria is just starting to be elucidated. The present study describes the first isolation and biochemical characterization of a prokaryotic sucrose synthase (SS, EC 2.4.1.13). Two SS forms (SS-I and SS-II) were detected in Anabaena sp. strain PCC 7119. The isoform SS-II was purified 457-fold and its amino-terminal portion sequenced. Substrate specificity, kinetic constants, native protein and subunit molecular masses, and the effect of different ions and metabolites were studied for SS-II. Anabaena SS was shown to be a tetramer with a 92-kDa polypeptide that was recognized by maize SS polyclonal antibodies. Some striking differences from plant enzymes were demonstrated with respect to substrate affinities, regulation by metal ions and ATP, and the amino-acid sequence of the N-terminal region. Received: 27 April 1999 / Accepted: 20 July 1999  相似文献   

11.
Starch metabolism in developing embryos of oilseed rape   总被引:7,自引:0,他引:7  
The aim of this work was to characterise the metabolism of starch in developing embryos of oilseed rape (Brassica napus L. cv. Topaz). The accumulation of starch in embryos in siliques which were darkened or had been exposed to the light was similar, suggesting that the starch is synthesised from imported sucrose rather than via photosynthesis in the embryo. Starch content and the activities of plastidial enzymes required for synthesis of starch from glucose 6-phosphate (Glc6P) both peaked during the early-mid stage of cotyledon development (i.e. during the early part of oil accumulation) and then declined. The mature embryo contained almost no starch. The starch-degrading enzymes α-(EC 3.2.1.1) and β-amylase (EC 3.2.1.2) and phosphorylase (EC 2.4.1.1) were present throughout development. Most of the activity of these three enzymes was extraplastidial and therefore unlikely to be involved in starch degradation, but there were distinct plastidial and extraplastidial isoforms of all three enzymes. Activity gels indicated that distinct plastidial isoforms increase during the change from net synthesis to net degradation of starch. Plastids isolated from embryos at stages both before and after the maximum starch content could convert Glc6P to starch although the rate was lower at the later stage. The results are consistent with the idea that starch synthesis and degradation occur simultaneously during embryo development. The possible roles of transient starch accumulation during embryo development are discussed. Received: 15 May 1997 / Accepted: 30 May 1997  相似文献   

12.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

13.
In barley (Hordeum vulgare L. var. Nure), glutamate synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) are strictly correlated biochemical processes. NADH-GOGAT was the major root isoform, whose activity increased on a medium supplied with NH4+ or NO3-; by contrast, no noticeable variations could be observed in the leaves of plants supplied with nitrogen. In the leaves, the major isoform is Fd-GOGAT, whose activity increased under nitrogen feeding. G6PDH activity increased in the roots supplied with nitrogen; no variations were observed in the leaves. Moreover, an increase of the P2 isoform in the roots was measured, giving 13.6% G6PDH activity localized in the plastids under ammonium, and 25.2% under nitrate feeding conditions. Western blots confirmed that P2-G6PDH protein was induced in the roots by nitrogen. P1-G6PDH protein was absent in the roots and increased in the leaves by nitrogen supply to the plants. The changes measured in cytosolic G6PDH seem correlated to more general cell growth processes, and do not appear to be directly involved in glutamate synthesis. The effects of light on Fd-GOGAT is discussed, together with the possibility for P2-G6PDH to sustain nitrogen assimilation upon illumination.  相似文献   

14.
Plastids have been isolated from pea (Pisum sativum L.) roots with a high degree of purity and intactness. In these plastids, the activity of enzymes involved in carbohydrate metabolism have been analyzed and corrected for cytosolic contamination. The results show that fructose-1,6-bisphosphatase, NAD-glyceraldehyde phosphate dehydrogenase, and phosphoglyceromutase are not present in pea root plastids. Transport measurements revealed that inorganic phosphate, dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and glucose-6-phosphate (Glc6p) are transported across the envelope in a counterexchange mode. Transport of glucose-1-phosphate was definitely excluded. The oxidation of Glc6P by intact plastids resulted almost exclusively in the formation of DHAP. The parallel measurement of DHAP formation and NO2- consumption during Glc6P-supported nitrite reduction yielded a ratio of NO2-reduced/DHAP formed of 1.6, which is relatively close to the theoretical value of 2.0. These results show that the oxidation of Glc6P, involving the uptake of Glc6P and the release of DHAP, and the reduction of NO2- are very tightly coupled to each other.  相似文献   

15.
16.
The trehalose operon of Bacillus subtilis is subject to regulation by induction, mediated by the repressor TreR, and by carbon catabolite repression (CCR). For in vitro investigations, TreR from B. subtilis was overproduced and purified. Its molecular mass, as estimated by SDS-PAGE, is 27 kDa. Size fractionation under native conditions yielded a size estimate of 56 kDa, indicating that TreR exists as a dimer in its native state. Analysis of its interaction with various DNA fragments shows that TreR is able to recognize two tre operators with different efficiencies, and indicates cooperative binding. Previous results have suggested that CCR of the tre operon occurs by a mechanism in which the specific regulator, TreR, may be involved independently of the central component, CcpA. The data presented here indicate that the TreR-tre operator interaction is influenced by several effectors. Thus, the presence of trehalose-6-phosphate, as well as glucose-1-phosphate and sodium chloride, inhibits tre operator binding. Glucose-6-phosphate can act as an anti-inducer, which might reflect its additional role in CCR exerted by glucose. Received: 28 April 1998 / Accepted: 8 July 1998  相似文献   

17.
Min Yu  Peter J. Facchini 《Planta》1999,209(1):33-44
A development-specific and elicitor-inducible acyltransferase [hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110)] that catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-CoA esters to hydroxyphenethylamines was purified 988-fold to apparent homogeneity from opium poppy (Papaver somniferum L.) cell-suspension cultures. The purification procedure, which resulted in a 6.8% yield, involved hydrophobic interaction and anion-exchange chromatography, followed by affinity chromatography on Reactive Yellow-3-Agarose using the acyl donor (feruloyl-CoA) as eluent. Purified THT had an isoelectric point of 5.2, a native molecular mass of approximately 50 kDa, and consisted of two apparently identical 25-kDa subunits as determined by two-dimensional polyacrylamide gel electrophoresis. The purified enzyme was able to synthesize a variety of amides due to a relatively low specificity for cinnamoyl-CoA derivatives and hydroxyphenethylamines. The best substrates were feruloyl-CoA (VK m −113.4 mkat g−1 M−1) and tyramine (VK m −16.57 mkat g−1 M−1). The THT activity increased during development of opium poppy seedlings, occurred at high levels in roots and stems of mature plants, and was induced in cell-suspension cultures after treatment with a pathogen-derived elicitor. Immunoblot analysis using THT mouse polyclonal antibodies did not always show a correlation between THT polypeptide and enzyme activity levels. For example, despite low THT activity in leaves, an abundant 25-kDa immunoreactive polypeptide was detected. Immunohistochemical localization showed that THT polypeptides occur in cortical and xylem parenchyma, immature xylem vessel elements, root periderm, anthers, ovules, and the inner layer of the seed coat, but are most abundant in phloem sieve-tube members in roots, stems, leaves, and anther filaments. Received: 19 January 1999 / Accepted: 3 March 1999  相似文献   

18.
A protocol for the isolation of intact plastids from two marine centric diatoms, Odontella sinensis (Greville) Grunow and Coscinodiscus granii Gough, has been worked out. The cells were broken in a Yeda Press, and the intact plastids were purified by centrifugation in Percoll gradients. Electron microscopy indicates that at least one of the four envelope membranes is present in the isolated plastids. The plastids are photosynthetically active as proven by CO2 fixation which was measured by light-dependent oxygen evolution. Rates up to 50 μmol O2 · (mg Chl)−1 · h−1, i.e. about 40% of the in vivo rate of photosynthesis were obtained. The inhibition of CO2 fixation by external phosphate and the ability of the plastids to reduce added 3-phosphoglycerate photosynthetically indicate the presence of a phosphate translocator in the envelope of the diatom plastids. Light-dependent O2 evolution upon addition of nitrite indicates the presence of nitrite reductase in these plastids. Purified envelope membranes of Odontella plastids analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis contain polypeptides similar to those of the envelope of higher-plant chloroplasts. However, there are additional bands present, which in part may be constituents of the two additional envelope membranes (“chloroplast endoplasmic reticulum”) and in part may represent additional components of the inner membranes. Received: 1 August 1997 / Accepted: 2 February 1998  相似文献   

19.
M. J. Emes  S. England 《Planta》1986,168(2):161-166
A procedure is described for the purification of plastids from the roots of Pisum sativum L. The preparations obtained are appreciably free of contamination by other particles as judged by the distribution of organelle-specific marker enzymes and by electron microscopy. Latency of glutamate synthase (EC 2.6.1.53) within these preparations indicates that the plastids obtained are 90–95% intact, whilst the resistance of this enzyme, and glucose-6-phosphogluconate dehydrogenase (EC 1.1.1.43) to tryptic digestion in unlysed organelles indicates that they are at least 70–85% intact and may be suitable for studies of metabolite transport.  相似文献   

20.
Lehmann H  Stelzer R  Holzamer S  Kunz U  Gierth M 《Planta》2000,211(6):816-822
 In transmission electron microscopy studies, lanthanum ions have been used as electron-opaque tracers to delineate the apoplastic pathways for ion transport in barley (Hordeum vulgare L.) roots. To localize La3+ on the subcellular level, e.g. in cell walls and on the surface of membranes, electron-energy-loss spectroscopy and electron-spectroscopic imaging were used. Seminal and nodal roots were exposed for 30 min to 1 mM LaCl3 and 10 mM LaCl3, respectively. In seminal roots, possessing no exodermis, La3+ diffusion through the apoplast was stopped by the Casparian bands of the endodermis. In nodal roots with an exodermis, however, La3+ diffusion through the cortical apoplast had already stopped at the tight junctions of the exodermal cell walls resembling the Casparian bands of the endodermis. Therefore, we conclude that in some specialized roots such as the nodal roots of barley, the physiological role of the endodermis is largely performed by the exodermis. Received: 28 July 1999 / Accepted: 24 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号