首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution.  相似文献   

2.
Repeat-induced point mutation (RIP) is a process that detects DNA duplications and peppers their sequences with C:G to T:A transitions in the sexual phase of the life cycle. So far, this unique mechanism has been identified as a currently active process in only two fungal species, Neurospora crassa and Podospora anserina. To determine whether a RIP-like process operates in the plant pathogenic fungus Magnaporthe grisea, the retrotransposon MAGGY and the hygromycin B phosphotransferase gene were introduced into the fungus as multiple transgenes and examined for sequence alterations after a cross. Frequent C:G to T:A transitions in the transgenes were found in the descendants, preferentially in (A/Tp)Cp(A/T)contexts, suggesting that a process similar to RIP functions in M.grisea. We also examined the sequence of another retrotransposon Pyret in six field isolates of M. grisea. Even though no perfect stage has been known in M. grisea under field conditions to date, RIP-like transitions were found in all the field isolates tested. Interestingly, the frequency of the transitions mostly correlated with the fertility of the isolates examined under laboratory conditions. These results imply that the sexual cycle of this fungus exists or existed in the natural field context.  相似文献   

3.
RIP (Repeat-Induced point Mutation) and PR (Premeiotic Recombination) are two developmentally regulated processes in filamentous ascomycetes. RIP detects and mutates duplicated DNA sequences, while PR results in deletion of the interstitial sequence between cis-duplicated DNA sequences. These two silencing processes take place between fertilization and premeiotic replication, a period during which the mating-type genes play an active role in several developmental processes. Previous studies have shown that mutations in the mating-type genes affect the development of the fruiting body. This study provides evidence that mutations in the mating-type genes reduce the frequency of RIP and PR. It establishes that alleles which have the more stringent effect on fruiting-body development, have also the strongest effect on RIP and PR frequencies. We propose two models for the relation between mating-type genes and RIP and PR, one based on the direct control of RIP and PR by mating-type regulatory proteins, the other based on an indirect effect through the control of a development step during which RIP and PR take place.  相似文献   

4.
RIP (Repeat-Induced point Mutation) and PR (Premeiotic Recombination) are two developmentally regulated processes in filamentous ascomycetes. RIP detects and mutates duplicated DNA sequences, while PR results in deletion of the interstitial sequence between cis-duplicated DNA sequences. These two silencing processes take place between fertilization and premeiotic replication, a period during which the mating-type genes play an active role in several developmental processes. Previous studies have shown that mutations in the mating-type genes affect the development of the fruiting body. This study provides evidence that mutations in the mating-type genes reduce the frequency of RIP and PR. It establishes that alleles which have the more stringent effect on fruiting-body development, have also the strongest effect on RIP and PR frequencies. We propose two models for the relation between mating-type genes and RIP and PR, one based on the direct control of RIP and PR by mating-type regulatory proteins, the other based on an indirect effect through the control of a development step during which RIP and PR take place.  相似文献   

5.
RIP (repeat-induced point mutation) is a silencing process discovered in Neurospora crassa and so far clearly established only in this species as a currently occurring process. RIP acts premeiotically on duplicated sequences, resulting in C-G to T-A mutations, with a striking preference for CpA/TpG dinucleotides. In Podospora anserina, an RIP-like event was observed after several rounds of sexual reproduction in a strain with a 40 kb tandem duplication resulting from homologous integration of a cosmid in the mating-type region. The 9 kb sequenced show 106 C-G to T-A transitions, with 80% of the replaced cytosines located in CpA dinucleotides. This led to the alteration of at least six genes, two of which were unidentified. This RIP-like event extended to single-copy genes between the two members of the repeat. The overall data show that the silencing process is strikingly similar to a light form of RIP, unaccompanied by C-methylation. Interestingly, the N. crassa zeta-eta sequence, which acts as a potent de novo C-methylation RIP signal in this species, is weakly methylated when introduced into P. anserina. These results demonstrate that RIP, at least in light forms, can occur beyond N. crassa.  相似文献   

6.
D. Zickler  S. Arnaise  E. Coppin  R. Debuchy    M. Picard 《Genetics》1995,140(2):493-503
In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation.  相似文献   

7.
G. Loubradou  J. Begueret    B. Turcq 《Genetics》1997,147(2):581-588
Vegetative incompatibility is widespread in fungi but its molecular mechanism and biological function are still poorly understood. A way to study vegetative incompatibility is to investigate the function of genes whose mutations suppress this phenomenon. In Podospora anserina, these genes are known as mod genes. In addition to suppressing vegetative incompatibility, mod mutations cause some developmental defects. This suggests that the molecular mechanisms of vegetative incompatibility and development pathways are interconnected. The mod-E1 mutation was isolated as a suppressor of the developmental defects of the mod-D2 strain. We show here that mod-E1 also partially suppresses vegetative incompatibility, strengthening the link between development and vegetative incompatibility. mod-E1 is the first suppressor of vegetative incompatibility characterized at the molecular level. It encodes a member of the Hsp90 family, suggesting that development and vegetative incompatibility use common steps of a signal transduction pathway. The involvement of mod-E in the sexual cycle has also been further investigated.  相似文献   

8.
Repeat-induced point mutation (RIP) is an unusual genome defense mechanism that was discovered inNeurospora crassa. RIP occurs during a sexual cross and induces numerous G : C to A : T mutations in duplicated DNA sequences and also methylates many of the remaining cytosine residues. We measured the susceptibility of theerg-3 gene, present in single copy, to the spread of RIP from duplications of adjoining sequences. Genomic segments of defined length (1, 1.5 or 2 kb) and located at defined distances (0, 0.5, 1 or 2 kb) upstream or downstream of theerg-3 open reading frame (ORF) were amplified by polymerase chain reaction (PCR), and the duplications were created by transformation of the amplified DNA. Crosses were made with the duplication strains and the frequency oferg-3 mutant progeny provided a measure of the spread of RIP from the duplicated segments into theerg-3 gene. Our results suggest that ordinarily RIP-spread does not occur. However, occasionally the mechanism that confines RIP to the duplicated segment seems to fail (frequency 0.1–0.8%) and then RIP can spread across as much as 1 kb of unduplicated DNA. Additionally, the bacterialhph gene appeared to be very susceptible to the spread of RIP-associated cytosine methylation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

17.
The flexuosa (fle1-1) mutant, isolated in Podospora anserina, displays vegetative defects and two antagonistic sexual phenotypes: it produces several 1000-fold fewer microconidia (male gametes) than the wild-type strain and, conversely, more abundant protoperithecia (female organs). Cloning and sequencing of the fle1 gene and of cDNA identified an open reading frame encoding a 382-amino-acid polypeptide with two C2H2 zinc finger motifs. The predicted FLE1 protein shares 46% identity with the FlbC protein of Aspergillus nidulans and 68% identity with a putative protein identified by a search in the Neurospora crassa database. The nuclear localization of FLE1 was demonstrated by fusion with the green fluorescent protein. Sequencing of the fle1-1 mutant allele revealed a frameshift mutation upstream of the zinc finger domain. The fle1-1 mutant was a null mutant, as targeted disruption of fle1 sequence led to the same pleiotropic phenotype. When fle1 was overexpressed by introduction of a transgenic copy of the native fle1 gene or a fusion with a strong promoter, formation of protoperithecia was impaired, leading to partial or complete female sterility. We propose that fle1 acts as a repressor of female sexual differentiation in order to maintain the balance between male and female sexual pathways.  相似文献   

18.
19.
We show that pyruvate decarboxylase (PDC) 8- to 10-nm-diameter filaments, first described in vegetative cells of Neurospora crassa, are ubiquitously present in filamentous fungi. The cellular arrangement of these structures was examined over the entire sexual cycle of the ascomycetes N. crassa, N. tetraesperma, Podospora anserina, and Sordaria macrospora. PDC-filaments were found associated with the cortical microtubule array of asci and ascospores and absent from the vicinity of spindles and spindle pole bodies. Nocodazole-induced depolymerization of the cortical microtubules results in the loss of PDC-filaments. Moreover, a S. macrospora mutant defective in cortical MT distribution shows abnormal PDC organization. Neurospora asci generated on various metabolic conditions, which modify the presence and relative abundance of PDC-filaments in vegetative cells, have identical patterns of subcellular distribution of these structures. A N. crassa mutant (snowflake) that accumulates giant bundles of PDC-filaments during vegetative growth, shows normal distribution of the filaments during ascogenesis. Thus, the regulation conditioning the presence and supramolecular assembly of PDC-filaments in Neurospora differs between vegetative and sexual cells. Taken together, these results suggest that PDC in filamentous fungi may perform two functions, intervening as an enzyme in vegetative metabolism and as a structural protein associated with the cytoskeleton during sexual development.  相似文献   

20.
The nuclear gene coding for the 20.8-kDa subunit of the membrane arm of respiratory chain NADH:ubiquinone reductase (Complex I) fromNeurospora crassa, nuo-20.8, was localized on linkage group I of the fungal genome. A genomic DNA fragment containing this gene was cloned and a duplication was created in a strain ofN. crassa by transformation. To generate RIP (repeat-induced point) mutations in the duplicated sequence, the transformant was crossed with another strain carrying an auxotrophic marker on chromosome I. To increase the chance of finding an isolate with a non-functionalnuo-20.8 gene, random progeny from the cross were selected against this auxotrophy since RIP of the target gene will only occur in the nucleus carrying the duplication. Among these, we isolated and characterised a mutant strain that lacks the 20.8 kDa mitochondrial protein, indicating that this cysteine-rich polypeptide is not essential. Nevertheless, the absence of the 20.8-kDa subunit prevents the full assembly of complex I. It appears that the peripheral arm and two intermediates of the membrane arm of the enzyme are still formed in the mutant mitochondria. The NADH:ubiquinone reductase activity of sonicated mitochondria from the mutant is rotenone insensitive. Electron microscopy of mutant mitochondria does not reveal any alteration in the structure or numbers of the organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号