首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of engrailed proteins in arthropods, annelids, and chordates   总被引:57,自引:0,他引:57  
engrailed is a homeobox gene that has an important role in Drosophila segmentation. Genes homologous to engrailed have been identified in several other organisms. Here we describe a monoclonal antibody that recognizes a conserved epitope in the homeodomain of engrailed proteins of a number of different arthropods, annelids, and chordates; we use this antibody to isolate the grasshopper engrailed gene. In Drosophila embryos, the antibody reveals engrailed protein in the posterior portion of each segment during segmentation, and in a segmentally reiterated subset of neuronal cells during neurogenesis. Other arthropods, including grasshopper and two crustaceans, have similar patterns of engrailed expression. However, these patterns of expression are not shared by the annelids or chordates we examined. Our results provide the most comprehensive view that has been obtained of how expression patterns of a regulatory gene vary during evolution. On the basis of these patterns, we suggest that engrailed is a gene whose ancestral function was in neurogenesis and whose function was co-opted during the evolution of segmentation in the arthropods, but not in the annelids and chordates.  相似文献   

2.
BACKGROUND: The expression patterns of the segment polarity genes wingless and engrailed are conserved during segmentation in a variety of arthropods, suggesting that the regulatory interactions between these two genes are also evolutionarily conserved. Hypotheses derived from such comparisons of gene expression patterns are difficult to test experimentally as genetic manipulation is currently possible for only a few model organisms. RESULTS: We have developed a system, using recombinant baculoviruses, that can be applied to a wide variety of organisms to study the effects of ectopic expression of genes. As a first step, we studied the range and type of infection of several reporter viruses in the embryos of two arthropod and one vertebrate species. Using this system to express wingless, we were able to induce expression of engrailed in the anterior half of each parasegment in embryos of the fruit fly Drosophila melanogaster. Virus-mediated wingless expression also caused ectopic naked ventral cuticle formation in wild-type Drosophila larvae. In the flour beetle, Tribolium castaneum, ectopic wingless also induced engrailed expression. As in Drosophila, this expression was only detectable in the anterior half of the parasegment. CONCLUSIONS: The functional interaction between wingless and engrailed, and the establishment of cells competent to express engrailed, appears to be conserved between Drosophila and Tribolium. The data on the establishment of an engrailed-competent domain also support the idea that prepatterning by pair-rule genes is conserved between these two insects. The recombinant baculovirus technology reported here may help answer other long-standing comparative evolutionary questions.  相似文献   

3.
4.
The engrailed locus of Drosophila: structural analysis of an embryonic transcript   总被引:169,自引:0,他引:169  
S J Poole  L M Kauvar  B Drees  T Kornberg 《Cell》1985,40(1):37-43
cDNA clones originating from the engrailed gene of Drosophila have been isolated from recombinant phage libraries that were made using poly(A)+ RNA extracted from early embryos. The DNA sequence of one of these clones includes a homeo box, a 180 bp sequence present in several other Drosophila genes important in formation of body pattern during development. The homeo boxes found in the other Drosophila genes, as well as in cognate sequences from a wide range of segmented animals, including higher vertebrates, are highly conserved. By contrast, the homeo box within the engrailed gene diverges substantially and, unlike the other homeo boxes, is interrupted by an intervening sequence. The engrailed homeo box is located near the 3' end of a 1700 bp open reading frame. If translated, this sequence would produce a protein of unusual composition. We also show that a neighboring gene has a large region with strong homology to engrailed, and that it also contains a homeo box.  相似文献   

5.
Patterns of engrailed protein in early Drosophila embryos   总被引:2,自引:0,他引:2  
By the onset of gastrulation during nuclear cycle 14 of Drosophila embryogenesis, the engrailed gene is expressed in fourteen one-cell-wide stripes. Each stripe defines the anlagen of the posterior compartment of a metameric segment. We report here several observations relating to the role and disposition of the engrailed protein during the embryonic stages that precede cellularization. We demonstrate that in embryos mutant for the engrailed gene, there were characteristic morphological abnormalities as early as the 6th cleavage cycle. In addition, the engrailed protein was detected in pre-cycle-9 embryos by Western blot analysis. When localization of engrailed protein begins during cycle 14, engrailed expression was first present in broad anterior and posterior regions before the fourteen-stripe pattern appeared.  相似文献   

6.
During segmentation of the Drosophila embryo, even skipped is required to activate engrailed stripes and to organize odd-numbered parasegments. A 16 kb transgene containing the even skipped coding region can rescue normal engrailed expression, as well as all other aspects of segmentation, in even skipped null mutants. To better understand its mechanism of action, we functionally dissected the Even-skipped protein in the context of this transgene. We found that Even-skipped utilizes two repressor domains to carry out its function. Each of these domains can function autonomously in embryos when fused with the Gal4 DNA-binding domain. A chimeric protein consisting only of the Engrailed repressor domain and the Even-skipped homeodomain, but not the homeodomain alone, was able to restore function, indicating that the repression of target genes is sufficient for even skipped function at the blastoderm stage, while the homeodomain is sufficient to recognize those target genes. When Drosophila Even skipped was replaced by its homologs from other species, including a mouse homolog, they could provide substantial function, indicating that these proteins can recognize similar target sites and also provide repressor activity. Using this rescue system, we show that broad, early even skipped stripes are sufficient for activation of both odd- and even-numbered engrailed stripes. Furthermore, these 'unrefined' stripes organize odd-numbered parasegments in a dose-dependent manner, while the refined, late stripes, which coincide cell-for-cell with parasegment boundaries, are required to ensure the stability of the boundaries.  相似文献   

7.
Maternal expression of the l(1)pole hole (l(1)ph) gene product is required for the development of the Drosophila embryo. When maternal l(1)ph+ activity is absent, alterations in the embryonic fate map occur as visualized by the expression of segmentation genes fushitarazu and engrailed. If both maternal and zygotic activity is absent, embryos degenerate around 7 h of development. If only maternal activity is missing, embryos complete embryogenesis and show deletions of both anterior and posterior structures. Anteriorly, structures originating from labral and acron head regions are missing. Posteriorly, abdominal segments A8, 9 and 10, the telson and the proctodeum are missing. Similar pattern deletions are observed in embryos derived from the terminal class of female sterile mutations. Thus, the maternal l(1)ph+ gene product is required for the establishment of cell identities at the anterior and posterior poles of the Drosophila embryo.  相似文献   

8.
J P Vincent  P H O'Farrell 《Cell》1992,68(5):923-931
In Drosophila embryos, boundaries of lineage restriction separate groups of cells, or compartments. Engrailed is essential for specification of the posterior compartment of each segment, and its expression is thought to mark this compartment. Using a new photo-activatable lineage tracer, we followed the progeny of single embryonic cells marked at the blastoderm stage. No clones straddled the anterior edges of engrailed stripes (the parasegment border). However, posterior cells of each stripe lose engrailed expression, producing mixed clones. We suggest that stable expression of engrailed by cells at the anterior edge of the stripe reflects, not cell-intrinsic mechanisms, but proximity to cells that produce Wingless, an extracellular signal needed for maintenance of engrailed expression. If control of posterior cell fate parallels control of engrailed expression, cell fate is initially responsive to cell environment and cell fate determination is a later event.  相似文献   

9.
10.
Siegler MV  Jia XX 《Neuron》1999,22(2):265-276
Engrailed is expressed in subsets of interneurons that do not express Connectin or appreciable Neuroglian, whereas other neurons that are Engrailed negative strongly express these adhesion molecules. Connectin and Neuroglian expression are virtually eliminated in interneurons when engrailed expression is driven ubiquitously in neurons, and greatly increased when engrailed genes are lacking in mutant embryos. The data suggest that Engrailed is normally a negative regulator of Connectin and neuroglian. These are the first two "effector" genes identified in the nervous system of Drosophila as regulatory targets for Engrailed. We argue that differential Engrailed expression is crucial in determining the pattern of expression of cell adhesion molecules and thus constitutes an important determinant of neuronal shape and perhaps connectivity.  相似文献   

11.
SYNOPSIS. The power of genetic analysis possible with the fruitfly, Drosophila melanogaster, has yielded a detailed understandingof pattern formation controlled by homeotic and segmentationgenes in early embryogenesis. We are studying the genetic regulationof embryogenesis in the red flour beetle, Tribolium castaneum.The dynamic process of germ rudiment formation and sequentialsegmentation exhibited by Tribolium provides a context differentthan Drosophila within which to assess the function of homeoticand segmentation gene homologs. Our analyses of the genes inthe HOM-C suggest many similarities in structure and functionwith the well-characterized Drosophila genes. Abdominal resemblesits Drosophila homolog abdominal-A in functioning to establishsegmental identities in the abdomen, such that in each casemutations result in homeotic transformations to PS6. Althoughthe anterior functional boundary of abdominal-A homologs isprecisely conserved, the domain within which Abdominal is importantextends more posterior than that of abdominal-A. The final expression pattern of the segmentation gene engrailedin Tribolium is identical to Drosophila, suggesting that thesehomologs are involved in a conserved developmental process.However, as expected the development of that pattern is different;engrailed stripes anticipate the formation of each new segmentas they appear sequentially in the elongating germ band. Althoughthe grasshopper even-skipped and fushi tarazu homologs are notapparently important in segmentation, the expression patternsof the Tribolium homologs strongly suggest that they have gaineda role in segmentation in the lineage leading to beetles andflies. Nevertheless, differences between Tribolium and Drosophilain the dynamics of even-skipped expression and the fushi tarazumutant phenotype indicate divergence in the regulation and rolesof these genes.  相似文献   

12.
13.
14.
15.
The segment polarity genes engrailed and wingless are expressed in neighboring stripes of cells on opposite sides of the Drosophila parasegment boundary. Each gene is mutually required for maintenance of the other's expression; continued expression of both also requires several other segment polarity genes. We show here that one such gene, hedgehog, encodes a protein targeted to the secretory pathway and is expressed coincidently with engrailed in embryos and in imaginal discs; maintenance of the hedgehog expression pattern is itself dependent upon other segment polarity genes including engrailed and wingless. Expression of hedgehog thus functions in, and is sensitive to, positional signaling. These properties are consistent with the non-cell autonomous requirement for hedgehog in cuticular patterning and in maintenance of wingless expression.  相似文献   

16.
Engrailed is required to establish and maintain developmental compartments within each segment of the fly. To understand the role of the engrailed protein in this process, we have raised antibodies against engrailed and have visualized an engrailed protein in embryos by indirect immunofluorescence. The protein accumulates in the nucleus, supporting the notion that engrailed is a regulatory factor. The first pattern of expression is in alternating segments followed by expression in every segment, suggesting that engrailed may be responding to pair-rule segmentation gene products. Overall, engrailed protein levels peak in areas undergoing morphogenesis. Finally, the complex final form of the head and terminalia derive from earlier simple subdivision of these areas into developmental fields by engrailed.  相似文献   

17.
18.
19.
The segment polarity gene wingless has an essential function in cell-to-cell communication during various stages of Drosophila development. The wingless gene encodes a secreted protein that affects gene expression in surrounding cells but does not spread far from the cells where it is made. In larvae, wingless is necessary to generate naked cuticle in a restricted part of each segment. To test whether the local accumulation of wingless is essential for its function, we made transgenic flies that express wingless under the control of a hsp70 promoter (HS-wg flies). Uniform wingless expression results in a complete naked cuticle, uniform armadillo accumulation and broadening of the engrailed domain. The expression patterns of patched, cubitus interruptus Dominant and Ultrabithorax follow the change in engrailed. The phenotype of heatshocked HS-wg embryos resembles the segment polarity mutant naked, suggesting that embryos that overexpress wingless or lack the naked gene enter similar developmental pathways. The ubiquitous effects of ectopic wingless expression may indicate that most cells in the embryo can receive and interpret the wingless signal. For the development of the wild-type pattern, it is required that wingless is expressed in a subset of these cells.  相似文献   

20.
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号