首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Minimally invasive epicardial atrial ablation to cure atrial fibrillation through the use of a percutaneous subxiphoid approach currently has a lack of dedicated technology for intrapericardial navigation around the beating heart. We have developed a novel articulated robotic medical probe and performed preliminary experiments in a porcine preparation. METHODS: In five large, healthy pigs, the teleoperated robotic system was introduced inside the pericardial space through a percutaneous subxiphoid approach. Secondary visualization of the left atrium and left atrial appendage was achieved with the use of a 5-mm scope inserted through a left thoracic port. The operator actively controlled the path of the robot by using a master manipulator. The catheter, with an irrigated radiofrequency tip, was guided through the working port of the robot to achieve epicardial ablation of the left atrium. RESULTS: Access to the pericardial space and progression around the left atrium was successful in all cases, with no interference with the beating heart such as a fatal arrhythmia, unexpected bleeding, and hypotension. Epicardial ablation was successfully performed in all five cases. No adverse hemodynamic or electrophysiological events were noted during the trials. When the animals were killed, there was no visually detected injury on the surrounding mediastinal structures caused by ablation. Transmural ablation was confirmed by histopathology of the left atrium. CONCLUSIONS: We have developed a dedicated articulated robotic medical probe and successfully performed epicardial left atrial radiofrequency ablation. Based on the feedback from these preliminary experiments, the radius of curvature and proper visualization of the device are being improved in the next generation prototype.  相似文献   

2.
We describe two cases in which a biventricular implantable cardioverter defibrillator for cardiac resynchronization therapy had to be placed on the right side due to unsuitability of the left subclavian vein. Endocardial implantation of a left ventricular lead through the coronary sinus was previously attempted but was unsuccessful. Implantation of the epicardial left ventricular pacing lead was performed through video-assisted thoracic surgery on the left side. The connector end of the left ventricular pacing lead was tunnelized through the anterior mediastinum into the right pleural space. The right-sided pocket was then opened. A tunnel was created from the pocket to the thoracic wall, and the pleural space was entered over the second rib. The lead was retrieved from the right pleural space and connected with the Cardiac resynchronization therapy-device (CRT-D). Both procedures and postoperative periods were uneventful. Intrathoracic left-to-right tunneling of an epicardial left ventricular lead by video-assisted thoracic surgery is feasible and safe. It provides an alternative to subcutaneous tunneling.  相似文献   

3.
ABSTRACT: INTRODUCTION: Local aneurysms after surgical repair of coarctation of the aorta occur mainly in patients surgically treated by Dacron patch plasty during adulthood. The management of these patients is always problematic, with frequent complications and increased mortality rates. Percutaneous stent-graft implantation avoids the need for surgical reintervention. CASE PRESENTATION: We report a case involving the hybrid treatment by stent-graft implantation and transposition of the left subclavian artery to the left common carotid artery of an aneurysmal dilatation of the thoracic aorta that occurred in a 64-year-old Caucasian man, operated on almost 40 years earlier with a Dacron patch plasty for aortic coarctation. Our patient presented to our facility for evaluation with back pain and shortness of breath after minimal physical effort. A physical examination revealed stony dullness to percussion of the left posterior thorax, with no other abnormalities. The results of chest radiography, followed by contrast-enhanced computed tomography and aortography, led to a diagnosis of giant aortic thoracic aneurysm. Successful treatment of the aneurysm was achieved by percutaneous stent-graft implantation combined with transposition of the left subclavian artery to the left common carotid artery. His post-procedural recovery was uneventful. Three months after the procedure, computed tomography showed complete thrombosis of the excluded aneurysm, without any clinical signs of left lower limb ischemia or new onset neurological abnormalities. CONCLUSIONS: Our patient's case illustrates the clinical outcomes of surgical interventions for aortic coarctation. However, the very late appearance of a local aneurysm is rather unusual. Management of such cases is always difficult. The decision-making should be multidisciplinary. A hybrid approach was considered the best solution for our patient.  相似文献   

4.
During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.  相似文献   

5.
In A Darwinian left Peter Singer aims to reconcile Darwinian theory with left wing politics, using evolutionary game theory and in particular a model proposed by Robert Axelrod, which shows that cooperation can be an evolutionarily successful strategy. In this paper I will show that whilst Axelrod's model can give support to a kind of left wing politics, it is not the kind that Singer himself envisages. In fact, it is shown that there are insurmountable problems for the idea of increasing Axelrodian cooperation within a welfare state. My surprising conclusion will be that a Darwinian left worthy of the name would be anarchistic.  相似文献   

6.
O Tanaka  T Koh  H Otani 《Teratology》1986,33(2):187-193
A fifth-month fetus and a newborn with amniogenic band anomalies were examined at autopsy. Both specimens were obtained from women who had undergone oophorectomy during early pregnancy. The dead male fetus was aborted spontaneously, and had a micrognathia, a right club foot, and a constriction ring on the left lower leg. The left fingers 2, 3, and 4 were attached to the placenta by a fibrous string. No internal anomaly was noted. In the other case, a male newborn was delivered at the 39th week of gestation and had an agenesis of the calvarium, a cleft lip with palate, an amputation of the right toe, and constriction rings on right fingers 3 and 4 and left finger 3. The placenta was attached to the left temporooccipital region of the head by a fibrous string. Also present was an atrial septum defect and a horseshoe kidney. Possible etiology is discussed in relation to the "amniogenic bands" hypotheses.  相似文献   

7.
The objective of the study was to investigate the morphology, distribution, and electrophysiological profile of the autonomic fibers that innervate the ligament of Marshall (LOM). Gross anatomical dissections were performed in 10 dogs. Sections of the left vagus nerve, left stellate ganglion, and the LOM were immunostained to identify adrenergic and cholinergic nerves. Hearts were also stained for acetylcholinesterase to identify epicardial cholinergic nerves. In vivo electrophysiological studies were performed in another 10 dogs before and after LOM ablation. The anatomical examination revealed that the LOM is innervated by a branch of the left vagus. Immunohistochemistry confirmed that these nerve bundles are predominantly cholinergic (cholinergic-to-adrenergic ratio of 12.6 +/- 3.9:1). Cholinergic nerves originating in the LOM were found to innervate surrounding left atrial structures, including the pulmonary veins, left atrial appendage, coronary sinus, and posterior left atrial fat pad. Ablation of the LOM significantly attenuated effective refractory period shortening at distant sites, such as pulmonary veins and left atrial appendage, in response to vagal stimulation (vagal-induced ERP decrease in the left atrium: baseline vs. postablation = 17 vs. 4%; P = 0.0056). In conclusion, the LOM contains a predominance of cholinergic nerve fibers. Cholinergic fibers arising from the LOM innervate surrounding structures and contribute to the electrophysiological profile of the left atrium. These findings may provide a basis for the role of the LOM in the genesis and maintenance of atrial fibrillation.  相似文献   

8.
A period of supernormal excitability is left by a propagated impulse in a Pacinian corpuscle. The increase in excitability is found 6 to 10 msec. after an impulse occurs in the corpuscle. Supernormality is produced by either mechanically elicited dromic impulses, or by electrically excited antidromic impulses. Generator potentials do not cause supernormality. Local potentials discharged spontaneously by the corpuscle, and which fall on the supernormal trail left by an antidromic impulse, become enhanced in amplitude, an eventually are turned into propagated dromic potentials. The supernormal period is interpreted as caused by a negative after-potential left at the first intracorpuscular node of Ranvier which outlasts both the recovery time of the firing level and that of the generator potential during the corpuscle's relative refractory period.  相似文献   

9.
H Nathan  M R Seidel 《Acta anatomica》1983,117(4):362-373
The findings in a cadaver demonstrated: (a) an aberrant retroesophageal right subclavian artery (RRSA); (b) a thoracic duct (Th.d.) terminating at the junction of the right internal jugular and subclavian veins ('venous angle'), and (c) a left vertebral artery (LVA) of aortic origin. The origin of the RRSA from the aortic arch was distal and medial to the left subclavian artery and it reached the upper extremity by crossing posterior to the esophagus. The Th.d. ran a normal retroesophageal course in the mediastinum, until it was intercepted by the anomalous subclavian artery. At this level the Th.d. was deflected towards the right and, accompanied by the anomalous artery, reached the right venous angle. The LVA arose from the aortic arch between the left common carotid and the left subclavian arteries, and ascended to the transverse foramen of C6. The practical importance of associations in general is discussed, and the special diagnostic and surgical significance of the RRSA and Th.d. is stressed.  相似文献   

10.
The right uterine horn of alpacas causes luteolysis in the right ovary, whereas the left horn causes luteolysis in both ovaries. Female reproductive tracts were studied in 32 adult llamas, 12 adult alpacas, and 21 mid-gestation female fetuses to determine if there is a dichotomy in the vascular anatomy between the 2 sides. Adult tracts were studied by either injection of colored latex into the veins and arteries followed by tissue clearing or by injection of colored fluids during transillumination. Fetal uteri were studied by transillumination. The angioarchitecture of the ovarian vascular pedicle was similar to that reported for ewes. There was no vessel comparable to the middle uterine artery, which is the largest uterine artery in the other farm species. A striking difference from the uterine vascular of other farm species was the presence of a major branch of the right uterine artery that crossed the cranial intercornual area to supply much of the left uterine horn. A corresponding major vein originated from the left horn, crossed the mid-line, and terminated as a branch of the right uterine vein. Thus, the vascular anatomy indicated that much venous blood from the left horn drained to the right side. This was confirmed by injection of colored fluid into a small venous branch at the tip of the left horn. The prominent cross-over vessels were observed in the fetal uteri, and the diameter of the left uterine fetal horn (6.7 +/- 0.6 mm) was greater (P < 0.001) than the diameter of the right horn (5.8 +/- 0.5 mm). The presence of a large cross-over vein traversing from the left horn to the right side is compatible with the hypothesis that the left horn can exert luteolytic control over the corpus luteum in the right ovary through a veno-arterial pathway. The area of veno-arterial transfer of the luteolysin from a vein containing blood from the left horn into an artery supplying the right ovary was not defined in this study. However, the results provide an anatomical basis for functional testing of the cross-over hypothesis and defining the area of venoarterial transfer in camelids.  相似文献   

11.
Unilateral (left eye) optic nerve hypoplasia was detected in a six-month-old male Beagle dog. Vision testing indicated that the left eye had poor vision and testing the pupillary light reflex showed the left eye to have an absence of the afferent pathway of the reflex but it had a normal efferent pathway. Ophthalmoscopy revealed a small-sized optic disc, winding retinal artery and dilated retinal vasculature in the left globe. Electroretinography showed no abnormal findings even in the left globe. Histopathologically, the left optic nerve was markedly hypoplastic and was composed of sparse neural elements and a moderate amount of connective and glial tissues. In the retina of the left globe, the nerve fibre layer and the ganglion cell layer were reduced in thickness, although a small number of ganglion cells were still present. There were no abnormal findings detected in the right globe and the right optic nerve. The brain appeared normal macroscopically.  相似文献   

12.
目的观察大鼠左肾静脉不同程度狭窄所致左肾病变,为实验研究左肾静脉受压综合征肾组织淤血性损伤提供合适的动物模型。方法采用左肾静脉不全结扎的方法建立大鼠左肾静脉狭窄模型。将大鼠分为4组,假手术组和左肾静脉狭窄1.0mm模型组、0.7mm模型组、0.5mm模型组。术后7周处死动物。肾组织行病理学检查。肾皮质匀浆检测丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性。结果病理学检查见1.0mm模型组未见明显病变,0.7mm和0.5mm模型组肾小球系膜区增生,小管、间质细胞浸润和纤维化形成,0.5mm模型组病变程度较重。各模型组左肾皮质丙二醛含量均显著增高,超氧化物歧化酶活性均显著降低,变化幅度随狭窄程度的增大而增大。结论大鼠左肾静脉狭窄程度为0.7mm时,各项观察指标与胡桃夹综合征(NCS)患者的临床实际情况最接近,而1.0mm和0.5mm相对偏轻和偏重,0.7mm模型组可以作为大鼠左肾静脉狭窄致左肾淤血实验研究的合适模型。  相似文献   

13.
目的建立胎羊单侧输尿管梗阻的动物模型,探讨其病理、影像学特点。方法取12只单胎妊娠75-85 d的健康山羊,采用宫内手术的方法造成胎羊左侧输尿管不完全梗阻。对羔羊进行影像、病理学研究。结果12只孕羊中有3只流产;有9只孕羊顺产羔羊。超声检查:梗阻后的第3周内胎羊左肾显著增大、积水及实质变薄。放射学检查:羔羊左肾积水并且功能受损害。病理学检查:左肾肾小球数目减少,肾小管扩张明显,未见肾发育不良。结论对山羊单胎妊娠中期胎羊进行宫内手术建立胎羊单侧输尿管梗阻的动物模型是可行的,该模型能很好地模拟肾盂输尿管连接部梗阻所致的胎儿肾积水。  相似文献   

14.
The Invasion of Ukraine prompts us to support our Ukranian colleagues but also to keep open communication with the Russian scientists who oppose the war.

In the eyes of the civilized world, Russia has already lost the war: politically, it is becoming ever more isolated; economically as the sanctions take an enormous toll; militarily as the losses of the Russian army mount. In contrast, the courage of Ukrainian people fighting for their independence has united the Western world that is providing enormous support for those Ukrainians who fight the Russian invasion and those who have fled their war‐torn country. Once this war is over, Ukraine will have to heal the wounds of war, reunite families, restore its economy, reestablish infrastructure, and rebuild science and education. Russia will have to restore its dignity and overcome its self‐inflicted isolation.Europe’s unity in condemning Russia’s war of aggression and showing its solidarity with Ukraine has been impressive. This includes not the least welcoming and accommodating millions of refugees. We, the scientific community in Europe, have a moral obligation to help Ukrainian students and colleagues by providing safe space to study and to continue their research. First, European research organizations and funding agencies should develop strategies to support them in the years to come. Second, efforts by EMBO, research funders, universities, and research institutions to support Ukrainian students and scientists are necessary. As a first priority, dedicated and unbureaucratic short‐term scholarship and grant programs are required to accommodate Ukrainian scientists; such programs have been already initiated by many organizations, for example, by EMBO, Volkswagen Stiftung, Max Planck Society, and the ERC among others. These help Ukrainian scientists to stay connected to research and become integrated into the European research landscape. In the long‐term and after the war, this aid should be complemented by funding for research centers of excellence in Ukraine, to which scientists could then return.Even though the priority must be to help Ukrainians, we must also think of students and colleagues in Russia who oppose the war and are affected by the sanctions. As the Iron Curtain closes again, we have to think differently about our ongoing and future collaborations. Although freezing most, if not all, research collaborations with official Russian organizations is justified, it would be a mistake to extend these sanctions to all scientists and students. There is already an exodus of Russian and Belarusian scholars, which will only accelerate in the next months and years, and accepting scientists who ask for political asylum will be beneficial for Europe.The fraction of Russian society in open opposition to the war is, unfortunately, smaller than that officially in support of it. At the beginning of the war, a number of Russian scientists published an open letter on the internet, in which they condemn this war (https://t‐invariant.org/2022/02/we‐are‐against‐war/). They clearly state that "The responsibility for unleashing a new war in Europe lies entirely with Russia. There is no rational justification for this war”, and “demand an immediate halt to all military operations directed against Ukraine". At the same time, other prominent Russian science and education officials signed the “Statement of the Russian Union of University Rectors (Provosts)”, which expressed unwavering support for Russia, its president and its Army and their goal to “to achieve demilitarization and denazification of Ukraine and thus to defend ourselves from the ever‐growing military threat” (https://www.rsr‐online.ru/news/2022‐god/obrashchenie‐rossiyskogo‐soyuza‐rektorov1/).Inevitably, Russian scientists must decide themselves how to live and continue their scientific work under the increasingly tight surveillance of the Kremlin regime. History is repeating itself. Not long ago, during the Cold War, Soviet scientists were largely isolated from the international research community and worked in government‐controlled research. In some fields, no one knew what they were working on or where. However, even in those dark times, courageous individuals such as Andrei Sakharov spoke out against the regime and tried to educate the next generation about the importance of free will. Many Soviet geneticists had been arrested under Stalin’s regime of terror and as a result of Lysenkoism and were executed or sent to the Gulag or had to emigrate, such as Nikolaj Timofeev‐Resovskij, one of the great geneticists of his time and an opponent of communism. As a result of sending dissident scientists to Siberia, great educational institutions were created in the region, which trained many famous scientists. History tells us that it is impossible to kill free will and the search for truth.The Russian invasion of Ukraine is a major humanitarian tragedy and a tragedy for science at many levels. Our hope is that the European science community, policymakers, and funders will be prepared to continue and expand support for our colleagues from Ukraine and eventually help to rebuild the bridges with Russian science that have been torn down.This commentary has been endorsed and signed by the EMBO Young Investigators and former Young Investigators listed below.

All signatories are current and former EMBO Young Investigators and endorse the statements in this article.
Igor AdameykoKarolinska Institut, Stockholm, Sweden
Bungo AkiyoshiUniversity of Oxford, United Kingdom
Leila AkkariNetherlands Cancer Institute, Amsterdam, Netherlands
Panagiotis AlexiouMasaryk University, Brno, Czech Republic
Hilary AsheFaculty of Life Sciences, University of Manchester, United Kingdom
Michalis AverofInstitut de Génomique Fonctionnelle de Lyon (IGFL), France
Katarzyna BandyraUniversity of Warsaw, Poland
Cyril BarinkaInstitute of Biotechnology AS CR, Prague, Czech Republic
Frédéric BergerGregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
Vitezslav BryjaInstitute of Experimental Biology, Masaryk University, Brno, Czech Republic
Janusz BujnickiInternational Institute of Molecular and Cell Biology, Warsaw, Poland
Björn BurmannUniversity Gothenburg, Sweden
Andrew CarterMRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Pedro CarvalhoSir William Dunn School of Pathology University of Oxford, United Kingdom
Ayse Koca CaydasiKoç University, Istanbul, Turkey
Hsu‐Wen ChaoMedical University, Taipei, Taiwan
Jeffrey ChaoFriedrich Miescher Institute, Basel, Switzerland
Alan CheungUniversity of Bristol, United Kingdom
Tim ClausenResearch Institute for Molecular Pathology (IMP), Vienna, Austria
Maria Luisa CochellaThe Johns Hopkins University School of Medicine, USA
Francisco CubillosSantiago de Chile, University, Chile
Uri Ben‐DavidTel Aviv University, Tel Aviv, Israel
Sebastian DeindlUppsala University, Sweden
Pierre‐Marc DelauxLaboratoire de Recherche en Sciences Végétales, Castanet‐Tolosan, France
Christophe DessimozUniversity, Lausanne, Switzerland
Maria DominguezInstitute of Neuroscience, CSIC ‐ University Miguel Hernandez, Alicante, Spain
Anne DonaldsonInstitute of Medical Sciences, University of Aberdeen, United Kingdom
Peter DraberBIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
Xiaoqi FengJohn Innes Centre, Norwich, United Kingdom
Luisa FigueiredoInstitute of Molecular Medicine, Lisbon, Portugal
Reto GassmannInstitute for Molecular and Cell Biology, Porto, Portugal
Kinga Kamieniarz‐GdulaAdam Mickiewicz University in Poznań, Poland
Roger GeigerInstitute for Research in Biomedicine, Bellinzona, Switzerland
Niko GeldnerUniversity of Lausanne, Switzerland
Holger GerhardtMax Delbrück Center for Molecular Medicine, Berlin, Germany
Daniel Wolfram GerlichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Jesus GilMRC Clinical Sciences Centre, Imperial College London, United Kingdom
Sebastian GlattMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
Edgar GomesInstitute of Molecular Medicine, Lisbon, Portugal
Pierre GönczySwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Maria GornaUniversity of Warsaw, Poland
Mina GoutiMax‐Delbrück‐Centrum, Berlin, Germany
Jerome GrosInstitut Pasteur, Paris, France
Anja GrothBiotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
Annika GuseCentre for Organismal Studies, Heidelberg, Germany
Ricardo HenriquesInstituto Gulbenkian de Ciência, Oeiras, Portugal
Eva HoffmannCenter for Chromosome Stability, University of Copenhagen, Denmark
Thorsten HoppeCECAD at the Institute for Genetics, University of Cologne, Germany
Yen‐Ping HsuehAcademia Sinica, Taipei, Taiwan
Pablo HuertasAndalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
Matteo IannaconeIRCCS San Raffaele Scientific Institute, Milan, Italy
Alvaro Rada‐IglesiasInstitue of Biomedicine and Biotechnology of Cantabria (IBBTEC)
University of Cantabria, Santander, Spain
Axel InnisInstitut Européen de Chimie et Biologie (IECB), Pessac, France
Nicola IovinoMPI für Immunbiologie und Epigenetik, Freiburg, Germany
Carsten JankeInstitut Curie, France
Ralf JansenInterfaculty Institute for Biochemistry, Eberhard‐Karls‐University Tübingen, Germany
Sebastian JessbergerHiFo / Brain Research Institute, University of Zurich, Switzerland
Martin JinekUniversity of Zurich, Switzerland
Simon Bekker‐JensenUniversity, Copenhagen, Denmark
Nicole JollerUniversity of Zurich, Switzerland
Luca JovineDepartment of Biosciences and Nutrition & Center for
Biosciences, Karolinska Institutet, Stockholm, Sweden
Jan Philipp JunkerMax‐Delbrück‐Centrum, Berlin, Germany
Anna KarnkowskaUniversity, Warsaw, Poland
Zuzana KeckesovaInstitute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
René KettingInstitute of Molecular Biology (IMB), Mainz, Germany
Bruno KlaholzInstitute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, Illkirch, France
Jürgen KnoblichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Taco KooijCentre for Molecular Life Sciences, Nijmegen, Netherlands
Romain KoszulInstitut Pasteur, Paris, France
Claudine KraftInstitute for Biochemistry and Molecular Biology, Universität Freiburg, Germany
Alena KrejciFaculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
Lumir KrejciNational Centre for Biomolecular Research (NCBR), Masaryk University, Brno, Czech Republic
Arnold KristjuhanInstitute of Molecular and Cell Biology, University of Tartu, Estonia
Yogesh KulathuMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Edmund KunjiMRC Mitochondrial Biology Unit, Cambridge, United Kingdom
Karim LabibMRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
Thomas LecuitDevelopmental Biology Institute of Marseilles ‐ Luminy (IBDML), France
Gaëlle LegubeCenter for Integrative Biology in Toulouse, Paul Sabatier University, France
Suewei LinAcademia Sinica, Taipei, Taiwan
Ming‐Jung LiuAcademia Sinica, Taipei, Taiwan
Malcolm LoganRandall Division of Cell and Molecular Biophysics, King’s College London, United Kingdom
Massimo LopesUniversity of Zurich, Switzerland
Jan LöweStructural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Martijn LuijsterburgUniversity Medical Centre, Leiden, Netherlands
Taija MakinenUppsala University, Sweden
Sandrine Etienne‐MannevilleInstitut Pasteur, Paris, France
Miguel ManzanaresSpanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
Jean‐Christophe MarineCenter for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB & KU Leuven, Belgium
Sascha MartensMax F. Perutz Laboratories, University of Vienna, Austria
Elvira MassUniversität Bonn, Germany
Olivier MathieuClermont Université, Aubière, France
Ivan MaticMax Planck Institute for Biology of Ageing, Cologne, Germany
Joao MatosMax Perutz Laboratories, Vienna, Austria
Nicholas McGranahanUniversity College London, United Kingdom
Hind MedyoufGeorg‐Speyer‐Haus, Frankfurt, Germany
Patrick MeraldiUniversity of Geneva, Switzerland
Marco MilánICREA & Institute for Research in Biomedicine (IRB), Barcelona, Spain
Eric MiskaWellcome Trust/Cancer Research UK Gurdon Institute,
University of Cambridge, United Kingdom
Nuria MontserratInstitut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
Nuno Barbosa‐MoraisInstitute of Molecular Medicine, Lisbon, Portugal
Antonin MorillonInstitut Curie, Paris, France
Rafal MostowyJagiellonian University, Krakow, Poland
Patrick MüllerUniversity of Konstanz, Konstanz, Germany
Miratul MuqitUniversity of Dundee, United Kigdom
Poul NissenCentre for Structural Biology, Aarhus University, Denmark
Ellen NollenEuropean Research Institute for the Biology of Ageing, University of Groningen, Netherlands
Marcin NowotnyInternational Institute of Molecular and Cell Biology, Warsaw, Poland
John O''NeillMRC Laboratory of Molecular Biology, Cambridge, United Kigdom
Tamer ÖnderKoc University School of Medicine, Istanbul, Turkey
Elin OrgUniversity of Tartu, Estonia
Nurhan ÖzlüKoç University, Istanbul, Turkey
Bjørn Panyella PedersenAarhus University, Denmark
Vladimir PenaLondon, The Institute of Cancer Research, United Kingdom
Camilo PerezBiozentrum, University of Basel, Switzerland
Antoine PetersFriedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
Clemens PlaschkaIMP, Vienna, Austria
Pavel PlevkaCEITEC, Masaryk University, Brno, Czech Republic
Hendrik PoeckTechnische Universität, München, , Germany
Sophie PoloUniversité Diderot (Paris 7), Paris, France
Simona PoloIFOM ‐ The FIRC Institute of Molecular Oncology, Milan, Italy
Magdalini PolymenidouUniversity of Zurich, Switzerland
Freddy RadtkeSwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Markus RalserInstitute of Biochemistry Charité, Berlin, Germany & MRC National Institute for Medical Research, London, United Kingdom
Jan RehwinkelJohn Radcliffe Hospital, Oxford, United Kingdom
Maria RescignoEuropean Institute of Oncology (IEO), Milan, Italy
Katerina RohlenovaPrague, Institute of Biotechnology, Czech Republic
Guadalupe SabioCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Ana Jesus Garcia SaezUniversity of Cologne, CECAD Research Center, Germany
Iris SaleckerInstitut de Biologie de l''Ecole Normale Supérieure (IBENS), Paris, France
Peter SarkiesUniversity of Oxford, United Kingdom
Frédéric SaudouGrenoble Institute of Neuroscience, France
Timothy SaundersCentre for Mechanochemical Cell Biology, Interdisciplinary Biomedical Research Building, Warwick Medical School, Coventry, United Kingdom
Orlando D. SchärerIBS Center for Genomic Integrity, Ulsan, South Korea
Arp SchnittgerBiozentrum Klein Flottbek, University of Hamburg, Germnay
Frank SchnorrerAix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
Maya SchuldinerDepartment of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Schraga SchwartzWeizmann Institute of Science, Rehovot, Israel
Martin SchwarzerInstitute of Microbiology, Academy of Sciences of the Czech Republic
Claus MariaInstituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa, Portugal
Hayley SharpeThe Babraham Institute, United Kingdom
Halyna ShcherbataInstitute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
Eric SoDepartment of Haematological Medicine, King''s College London, United Kingdom
Victor SourjikMax Planck Institute for Terrestrial Microbiology, Marburg, Germany
Anne SpangBiozentrum, University of Basel, Switzerland
Irina StanchevaInstitute of Cell Biology, University of Edinburgh, United Kingdom
Bas van SteenselDepartment of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
Richard SteflCEITEC, Masaryk University, Brno, Czech Republic
Yonatan StelzerWeizmann Institute of Science, Rehovot, Israel
Julian StingeleLudwig‐Maximilians‐Universität, München, Germany
Katja SträßerInstitute for Biochemistry, University of Giessen, Germany
Kvido StrisovskyInstitute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
Joanna SulkowskaUniversity, Warsaw, Poland
Grzegorz SumaraNencki Institute of Experimental Biology, Warsaw, Poland
Karolina SzczepanowskaInternational Institute Molecular Mechanisms & Machines PAS, Warsaw, Poland
Luca TamagnoneInstitute for Cancer Research and Treatment, University of Torino Medical School, Italy
Meng How TanSingapore, Nanyang Technological University, Singapore
Nicolas TaponCancer Research UK London Research Institute, United Kingdom
Nicholas M. I. TaylorUniversity, Copenhagen, Denmark
Sven Van TeeffelenUniversité de Montréal, Canada
Maria Teresa TeixeiraLaboratory of Molecular and Cellular Biology of Eukaryotes, IBPC, Paris, France
Aurelio TelemanGerman Cancer Research Center (DKFZ), Heidelberg, Germany
Pascal TherondInstitute Valrose Biology, University of Nice‐Sophia Antipolis, France
Pavel TolarUniversity College London, United Kingdom
Isheng Jason TsaiAcademia Sinica, Taipei, Taiwan
Helle UlrichInstitute of Molecular Biology (IMB), Mainz, Germany
Stepanka VanacovaCentral European Institute of Technology, Masaryk University, Brno, Czech Republic
Henrique Veiga‐FernandesChampalimaud Center for the Unknown, Lisboa, Portugal
Marc VeldhoenInstituto de Medicina Molecular, Lisbon, Portugal
Louis VermeulenAcademic Medical Centre, Amsterdam, Netherlands
Uwe VinkemeierUniversity of Nottingham Medical School, United Kingdom
Helen WaldenMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Michal WandelInstitute of Biochemistry and Biophysics, PAS, Warsaw, Poland
Julie WelburnWellcome Trust Centre, Edinburgh, United Kingdom
Ervin WelkerInstitute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Gerhard WingenderIzmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
Thomas WollertInstitute Pasteur, Membrane Biochemistry and Transport, Centre François Jacob, Paris, France
Hyun YoukUniversity of Massachusetts Medical School, USA
Christoph ZechnerMPI für molekulare Zellbiologie und Genetik, Dresden, Germany
Philip ZegermanWellcome Trust / Cancer Research UK Gurdon Institute, University of Cambridge, United Kingdom
Alena ZikováInstitute of Parasitology, Biology Centre AS CR, Ceske Budejovice, Czech Republic
Piotr ZiolkowskiAdam Mickiewicz University, Poznan, Poland
David ZwickerMPI für Dynamik und Selbstorganisation, Göttingen, Germany
Open in a separate window  相似文献   

15.
Implantation of resynchronization implantable cardioverter defibrillator was performed in a patient with persistent left superior vena cava. A dual coil defibrillation lead was inserted in the right ventricle apex via a small innominate vein. Left ventricular and atrial leads were implanted through persistent left superior vena cava. Left ventricular lead was easily implanted into the postero lateral vein. Pacing thresholds and sensing values were excellent and remained stable at 18 months follow-up.Presence of persistent left superior vena cava generally makes transvenous lead implantation difficult. However when a favorable coronary sinus anatomy is also present, it may facilitate left ventricular lead positioning in the coronary sinus branches.  相似文献   

16.
Nöthling JO  Knesl O  Irons P  Lane E 《Theriogenology》2002,58(9):1705-1712
A 5-year-old cheetah suffered a complete prolapse of the left uterine horn after the birth of her second litter. Two attempts to reduce the prolapse transvaginally failed. The animal was hospitalized 13 days after the prolapse first occurred, and an ovariohysterectomy was performed to resolve the prolapse. The prolapsed uterine horn had been mutilated: its tip, together with the ipsilateral ovary was absent. Laparotomy revealed no sign of recent or past hemorrhage or adhesions, or any signs of the left ovarian artery or left ovarian vein in the remnants of the left mesovarium. A large vein crossed the uterine body from the left uterine horn to join the right uterine vein, presumably serving as the only route of venous drainage for the prolapsed uterine horn. A possible cause for the prolapse is excessive mobility of the uterus due to prior rupture of its mesial support. The animal died 24 days after surgery due to chronic renal failure, as a result of severe renal amyloidosis.  相似文献   

17.
A 46-year-old Brugada syndrome patient underwent insertion of a dual-chamber implantable cardioverter- defibrillator (ICD), revealing a left-sided superior vena cava (SVC), (figure 1), running, characteristically, left from the sternum and flowing into the great cardiac vein. Following this course, the atrial lead was placed in the right atrium (RA) (figure 2, arrow, note dorsal position). The ventricular lead was inserted through the connecting anonymous vein between left and right SVC (figure 1, double arrow), into the right SVC and right ventricle (RV). The presence of a left superior vena cava results from the persistence of the embryonic left anterior cardinal vein. This anomaly is present in approximately 0.5% of the general population and in 3 to 5% of persons with other congenital heart defects, as established by autopsy.  相似文献   

18.
Extranodal non-Hodgkin's lymphoma (NHL) of the breast is a rare entity. It represents 0.04-1.1% of malignant tumors of the breast. 1.7-2.2% of extranodal lymphomas and 0.7% of all NHL. However, primary NHL (PNHL) is the most frequent hematopojetic tumor of the breast. CASE: A 23-year-old woman presented with a mass in the left breast for 3 months followed by enlarged left axillary lymph nodes. Mammography showed a diffuse increase in the density of the left breast. Other investigations were unremarkable. Both fine needle aspiration cytology (FNAC) and histopathology were diagnostic of NHL. Immunohistochemistry was confirmatory of NHL, diffuse large cell type, of B-cell lineage. CONCLUSION: Primary and secondary lymphomas of the breast, though rare, should be considered in the differential diagnosis of breast malignancies. PNHL of the breast is usually right sided, but this patient had left breast involvement. Diagnosis by FNAC was successful as the cytologic picture is similar to that of any other lymphoid or extranodal NHL. When histopathology and immunohistopathology are conclusive, FNAC, supplemented by immunocytochemistry, can be applied as a simple, reliable and cost-effective tool in the early diagnosis of breast lymphomas.  相似文献   

19.
A labiogingival notch appearing on the enamel of maxillary central incisors seems to be a potential factor for compromised gingival and dental health. The objective of the survey was to describe the phenomenon and its prevalence in a random Israeli population. One thousand eight hundred eighty children with fully erupted permanent incisors were clinically examined. The appearance of the labiogingival notch on the enamel surface of the maxillary central incisors was determined. Two depth categories of the phenomenon were distinguished by probing. The possible differences in the prevalence of the labial notch appearance, between the sexes as well as between the right and left sides, were statistically evaluated. The prevalence between the right and left sides, were statistically evaluated. The prevalence of the labial notch on at least one incisor in the population examined was 6.5% (5.1% unilaterally and 1.4% bilaterally). No significant difference between the sexes regarding the appearance of this phenomenon was found. The shallow notch was similarly distributed between the right and left sides in both sexes. However, the deeper malformations appeared significantly more on the left side in boys (P less than 0.05) and in girls (P less than 0.01). The gingivae tended to follow the enamel contour; however, only in few cases was gingival inflammation or incipient caries diagnosed. It was concluded that the labio-gingival notch is not a rare phenomenon, and it should be given special attention to prevent possible damage to the dental and gingival tissues.  相似文献   

20.
Transvenous endocardial pacing through classical implantation of a pace/sensing lead in the right ventricle is strictly contraindicated in patients with a mechanical tricuspid valve. Usually permanent pacing is achieved by an epimyocardial surgical approach. We hereby describe the implantation of a single site left ventricle pacing lead in the anterior interventricular vein in a 60 year-old woman with symptomatic bradycardia, permanent atrial fibrillation, and mechanical tricuspid valve. The described use of left ventricle pacing through a coronary vein lead, in a patient with favorable venous anatomy, provided (through a minimal invasive approach) effective with a low and stable threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号