首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), which can develop to urothelial cancer. Understanding which enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual susceptibility to this natural carcinogen. We examined the ability of prostaglandin H synthase (PHS) to activate AA to metabolites forming DNA adducts with the nuclease P1 and 1-butanol extraction enrichment procedure of the (32)P-postlabeling assay. PHS is a prominent enzyme in the kidney and urothelial tissues. Ram seminal vesicle (RSV) microsomes, which contain high levels of PHS, generated AA-DNA adduct patterns reproducing those found in renal tissues in CHN patients. 7-(Deoxyadenosin-N(6)-yl)aristolactam I, 7-(deoxyguanosin-N(2)-yl)aristolactam I and 7-(deoxyadenosin-N(6)-yl)aristolactam II were identified as AA-DNA adducts formed by AAI. Two adducts, 7-(deoxyguanosin-N(2)-yl)aristolactam II and 7-(deoxyadenosin-N(6)-yl)aristolactam II, were generated from AAII. According to the structures of the DNA adducts identified, nitroreduction is the crucial pathway in the metabolic activation of AA. The identity of PHS as the activating enzyme in RSV microsomes was proven with different cofactors and inhibitors. Only indomethacin, a selective inhibitor of PHS, significantly decreased the amount of adducts formed by RSV microsomes. The inhibitor of NADPH:CYP reductase (alpha-lipoic acid) and some selective inhibitors of cytochromes P450 (CYP) were not effective. Likewise, only cofactors of PHS, arachidonic acid and hydrogen peroxide, supported the DNA adduct formation of AAI and AAII, while NADPH and NADH were ineffective. These results demonstrate a key role of PHS in the activation pathway of AAI and AAII in the RSV microsomal system and were corroborated with the purified enzyme, namely ovine PHS-1. The results presented here are the first report demonstrating a reductive activation of nitroaromatic compounds by PHS-1.  相似文献   

2.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with tumor development in patients suffering from Chinese herbs nephropathy (now termed aristolochic acid nephropathy, AAN) and may also be a cause for the development of a similar type of nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N6-yl)-aristolactam and 7-(deoxyguanosin-N2-yl)aristolactam] formed from AA after reductive metabolic activation were found in renal tissues of patients with both diseases. Understanding which human enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual's susceptibility to this plant carcinogen. This paper reviews major hepatic and renal enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone oxidoreductase (NQO1) is the most efficient in the activation of AA in human liver and kidney. Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and NQO1 was predicted from molecular modeling and explains the strong reductive potential of these enzymes for AA detected experimentally. We hypothesized that inter-individual variations in expressions and activities of enzymes activating AA may be one of the causes responsible for the different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies and associated urothelial cancer.  相似文献   

3.
Aristolochic acid nephropathy (AAN) is associated with the prolonged exposure to nephrotoxic and carcinogenic aristolochic acids (AAs). DNA adducts induced by AAs have been proven to be critical biomarkers for AAN. Therefore, accurate and specific quantification of AA-DNA adducts is important. In this study, a specific method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and applied for the determination of 7-(deoxyadenosin-N(6)-yl)aristolactam I (dA-AAI) in exfoliated urothelial cells of AA-dosed rats. After the isolation from urine samples, DNA in urothelial cells were subjected to enzymatic digestion and solid-phase extraction on a C(18) Sep-Pak cartridge for the enrichment of DNA adducts. The sample extracts were analyzed by reverse-phase UPLC-MS/MS with electrospray ionization in positive ion mode. The quantification of the AA-DNA adduct was performed by using multiple reaction monitoring with reserpine as internal standard. The method provided good accuracy and precision with a detection limit of 1 ng/ml, which allowed the detection of trace of dA-AAI in exfoliated urothelial cells. After one-month oral dose of AAI at 10 mg/kg/day, 2.1±0.3 dA-AAI per 10(9) normal dA was detected in exfoliated urothelial cells of rats. Compared to the traditional methods such as (32)P-postlabelling and HPLC with fluorescence detection, the developed UPLC-MS/MS method is more specific and rapid with a retention time of 4 min. The outcome of this study may have clinical significance for diagnosing and monitoring AA-associated disease because detection of DNA adducts in exfoliated urothelial cells is non-invasive and convenient.  相似文献   

4.
Chinese herbs nephropathy (CHN), a unique type of nephropathy has been associated with the intake of weight-reducing pills containing the Chinese herb Aristolochia fangchi. Moreover, an association between the use of A. fangchi and urothelial cancer in CHN patients has been reported indicating that aristolochic acid (AA) the major alkaloid of A. fangchi might be the causal agent. Similarities of CHN to the Balkan endemic nephropathy (BEN) have led to the hypothesis of a common etiological agent for both diseases. Evidence has accumulated that BEN is an environmentally-induced disease strongly associated with the fungal mycotoxin ochratoxin A (OTA). Both, AA and OTA are nephrotoxic and carcinogenic and induce the formation of DNA adducts. As OTA has been suspected as fungal contaminant in the herbal batches used for the preparation of the weight-reducing pills we analysed tissues from CHN patients by the 32P-postlabeling procedure for the presence of DNA adducts related to both OTA and AA exposure. Whereas, AA-specific DNA adducts were detected in all five urinary tract tissues from five patients (total RAL: 32-251 adducts per 10(9) nucleotides), OTA-related DNA adducts were detectable in two kidneys and one ureter only (total RAL: 1.5-3.7 adducts per 10(9) nucleotides). Thus, OTA-related DNA adduct levels were about 50 times lower than AA-DNA adduct levels. In female and male rats that were treated with the slimming regimen in the same way like the CHN patients except that the amount of Chinese herbs was 10 times higher, AA-DNA adducts were found in kidney tissues (total RAL ranging from 51 to 83 adducts per 10(9) nucleotides) but adducts derived from OTA were not observed. These results demonstrate that OTA-related DNA adducts do not play a key role in CHN or CHN-associated urothelial cancer.  相似文献   

5.
Aristolochic acid (AA), derived from the herbal genus Aristolochia and Asarum, has recently been shown to be associated with the development of nephropathy. Upon enzyme activation, AA is metabolized to the aristolactam-nitrenium ion intermediate, which reacts with the exocyclic amino group of the DNA bases via an electrophilic attack at its C7 position, leading to the formation of the corresponding DNA adducts. The AA-DNA adducts are believed to be associated with the nephrotoxic and carcinogenic effects of AA. In this study, liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS) was used to identify and quantify the AA-DNA adducts isolated from the kidney and liver tissues of the AA-dosed rats. The deoxycytidine adduct of AA (dC-AA) and the deoxyadenosine-AA adduct (dA-AA) were detected and quantified in the tissues of rats with one single oral dose (5mg or 30mg AA/kg body weight). The deoxyguanosine adduct (dG-AA), however, was detected only in the kidney of rats that were dosed at 30mg AA/kg body weight for three consecutive days. The amount of AA-DNA adducts found in the rats correlated well with the dosage.  相似文献   

6.
Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.  相似文献   

7.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
We have investigated the activation of p-cresol to form DNA adducts using horseradish peroxidase, rat liver microsomes and MnO(2). In vitro activation of p-cresol with horseradish peroxidase produced six DNA adducts with a relative adduct level of 8.03+/-0.43 x 10(-7). The formation of DNA adducts by oxidation of p-cresol with horseradish peroxidase was inhibited 65 and 95% by the addition of either 250 or 500 microM ascorbic acid to the incubation. Activation of p-cresol with phenobarbital-induced rat liver microsomes with NADPH as the cofactor; resulted in the formation of a single DNA adduct with a relative adduct level of 0.28+/-0.08 x 10(-7). Similar incubations of p-cresol with microsomes and cumene hydroperoxide yielded three DNA adducts with a relative adduct level of 0.35+/-0.03 x 10(-7). p-Cresol was oxidized with MnO(2) to a quinone methide. Reaction of p-cresol (QM) with DNA produced five major adducts and a relative adduct level of 20.38+/-1.16 x 10(-7). DNA adducts 1,2 and 3 formed by activation of p-cresol with either horseradish peroxidase or microsomes, are the same as that produced by p-cresol (QM). This observation suggests that p-cresol is activated to a quinone methide intermediate by these activation systems. Incubation of deoxyguanosine-3'-phosphate with p-cresol (QM) resulted in a adduct pattern similar to that observed with DNA; suggesting that guanine is the principal site for modification. Taken together these results demonstrate that oxidation of p-cresol to the quinone methide intermediate results in the formation of DNA adducts. We propose that the DNA adducts formed by p-cresol may be used as molecular biomarkers of occupational exposure to toluene.  相似文献   

9.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

10.
The effect of 7,8-diacetoxy-4-methylcoumarin (DAMC) has been studied on hepatic NADPH cytochrome C reductase-- an enzyme participating in the microsomal electron transport. The preincubation of liver microsomes with DAMC resulted in a time-dependent activation of NADPH cytochrome C reductase. The catalytic activity of the enzyme enhanced nearly 600% by 25 microM concentration of DAMC after 10 min of preincubation. The action of DAMC on the reductase resulted in enhanced v(max) while Km remained constant. A plot of 1/v(max) as a function of DAMC concentration resulted in a non-linear, but rectangular hyperbola indicative of hyperbolic activation. DAMC was also proved to be effective in significantly enhancing the activity of NADPH cytochrome C reductase in vivo. 7,8-Dihydroxy-4-methylcoumarin (DHMC), the deacetylated product of DAMC failed to irreversibly activate the enzyme. The activation effect of DAMC upon the enzyme was abolished by p-hydroxymercury benzoate. The role of a transacetylase in transferring the acetyl group of DAMC to the amino acid(s) of the active site of NADPH cytochrome C reductase causing irreversible enzyme activation is enunciated.  相似文献   

11.
Microsomal preparations isolated from yeast Candida tropicalis (C. tropicalis) grown on three different media with or without phenol were isolated and characterized for the content of cytochrome P450 (CYP) (EC 1.14.15.1). While no CYP was detected in microsomes of C. tropicalis grown on glucose as the carbon source, evidence was obtained for the presence of the enzyme in the microsomes of C. tropicalis grown on media containing phenol. Furthermore, the activity of NADPH: CYP reductase, another enzyme of the microsomal CYP-dependent system, was markedly higher in cells grown on phenol. Microsomes of these cells oxidized phenol. The major metabolite formed from phenol by microsomes of C. tropicalis was characterized by UV/vis absorbance and mass spectroscopy as well as by the chromatographic properties on HPLC. The characteristics are identical to those of catechol. The formation of catechol was inhibited by CO, the inhibitor of CYP, and correlated with the content of cytochrome P450 in microsomes. These results, the first report showing the ring hydroxylation of phenol to catechol with the microsomal enzyme system of C. tropicalis, strongly suggest that CYP-catalyzed reactions are responsible for this hydroxylation. The data demonstrate the progress in resolving the enzymes responsible for the first step of phenol degradation by the C. tropicalis strain.  相似文献   

12.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

13.
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the rate-limiting step in the cholesterogenic pathway and was proposed to be composed in situ of 2 noncovalently linked subunits (Edwards, P.A., Kempner, E.S., Lan, S.-F., and Erickson, S.K. (1985) J. Biol. Chem. 260, 10278-10282). In the present report, the activities and kinetic properties of HMG-CoA reductase in microsomes isolated from livers of rats fed on diets supplemented with either ground Amberlite XAD-2 ("X"), cholestyramine/mevinolin ("CM"), or unsupplemented, normal rat chow ("N"), were compared. The specific activities of HMG-CoA reductase in X and CM microsomes were, respectively, 5- and 83-fold higher than that of N microsomes. In NADPH-dependent kinetics of HMG-CoA reductase activated with 4.5 mM GSH, the concentration of NADPH required for half-maximal velocity (S0.5) was 209 +/- 23, 76 +/- 23, and 40 +/- 4 microM for the N, X, and CM microsomes, respectively. While reductase from X microsomes displays cooperative kinetics toward NADPH (Hill coefficient (nH) = 1.97 +/- 0.07), the enzyme from CM microsomes does not (nH = 1.04 +/- 0.07). Similarly to HMG-CoA reductase from CM microsomes, the freeze-thaw solubilized enzyme ("SOL") displays no cooperativity toward NADPH and its Km for this substrate is 34 microM. At 4.5 mM GSH, HMG-CoA reductase from X, CM, and SOL preparations has a similar Km value for [DL]-HMG-CoA, ranging between 13-16 microM, while reductase from N microsomes had a higher Km value (42 microM) for this substrate. No cooperativity towards HMG-CoA was observed in any of the tested enzyme preparations. Immunoblotting analyses of the different preparations demonstrated that the observed altered kinetics of HMG-CoA reductase in the microsomes is not due to preferential proteolytic cleavage of the native 97-100 kDa subunit of the enzyme to the noncooperative 50-55 kDa species. Moreover, it was found that the ratio enzymatic activity/immunoreactivity of the reductase increased in the order N less than X less than CM approximately equal to SOL, indicating that the activity per reductase molecule increases with the induction of the enzyme. These results are compatible with a model suggesting that dietary induction of hepatic HMG-CoA reductase may change the state of functional aggregation of its subunits.  相似文献   

14.
Metabolism by cytochrome P450 monooxygenases is a major mechanism implicated in resistance of insects to insecticides, including pyrethroids. We previously isolated the cytochrome P450 CYP6AA3 from deltamethrin-selected resistant strain of Anopheles minimus mosquito, a major malaria vector in Thailand. In the present study, we further investigated the role of CYP6AA3 enzyme in deltamethrin metabolism in vitro. The CYP6AA3 was expressed in Spodoptera frugiperda (Sf9) insect cells via baculovirus-mediated expression system. The enzymatic activity of CYP6AA3 in deltamethrin metabolism was characterized after being reconstituted with An. minimus NADPH-cytochrome P450 reductase and a NADPH-regenerating system. The contribution of CYP6AA3 responsible for deltamethrin metabolism was determined by measurement of deltamethrin disappearance following the incubation period and deltamethrin-derived compounds were detected using combined gas chromatography mass spectrometry analysis. 3-Phenoxybenzaldehyde was a major product of CYP6AA3-mediated deltamethrin metabolism. Deltamethrin degradation and formation of metabolites were NADPH-dependent and inhibited by piperonyl butoxide. Deltamethrin was catalyzed by CYP6AA3 with an apparent K(m) of 80.0 +/- 2.0 and V(max) of 60.2 +/- 3.6 pmol/min/pmol P450. Furthermore, deltamethrin cytotoxicity assays by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue dye exclusion were examined in Sf9 insect cells, with and without expression of CYP6AA3. Results revealed that CYP6AA3 could play a role in detoxifying deltamethrin in the cells. Thus, the results of this study support the role of CYP6AA3 in deltamethrin metabolism.  相似文献   

15.
N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ~6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes.  相似文献   

16.
Levels of components of the cytochrome P450 (CYP)-dependent monooxygenase system were characterised in microsomes of major biotransformation tissues, or whole bodies, of 33 species from six phyla of aquatic invertebrates. The phylogenetic distribution of benzo[a]pyrene hydroxylase (BPH) activity in the absence of added NADPH (so-called 'NADPH-independent BPH activity') and presence of NADPH was also examined. Microsomal protein yield was higher in individual tissues than whole tissues. The main components (total CYP and cytochrome b5; NADPH-dependent cytochrome c (CYP) reductase, NADH-dependent cytochrome c reductase and NADH-dependent ferricyanide (b5) reductase activities) were found in most species of the Porifera, Cnidaria, Mollusca, Polychaeta, Crustacea and Echinodermata examined. The so-called '418-peak' of the carbon-monoxide difference spectrum of reduced microsomes was found in all species, indicating the wide distribution of this protein. Total CYP levels (pmol mg(-1) protein; mean+/-SEM) were similar in molluscs (50+/-7), crustaceans (61+/-11) and echinoderms (56+/-9), with the exception of high levels (223-266) in two crustacean species. NADPH-dependent BPH activity (pmol min(-1) mg(-1) protein) was found in 32 species, being lowest in Porifera and Cnidaria (3-4), intermediate in Mollusca (7.8+/-1.3), and highest in Crustacea (25+/-4) and Echinodermata (15+/-4). NADPH-independent BPH activity was evident in 13 out of 15 molluscan species examined, with the addition of NADPH either stimulating (8 species) or inhibiting (5 species) the activity. NADPH-independent BPH activity was also seen in two poriferan species and indicated in three crustacean species, suggesting that the phenomenon is not solely restricted to the Mollusca.  相似文献   

17.
Ecdysone 20-monooxygenase, an enzyme which converts ecdysone to ecdysterone (the major moulting hormone of insects) has been characterized in cell-free preparations of tissues from African migratory locust. The product of the reaction has been identified as ecdysterone on the basis of several microchemical derivatization and chromatographic methods. Ecdysone 20-monooxygenase activity is located primarily in the microsomal fraction which also carries NADPH cytochrome c reductase and cytochrome P-450, as shown by sucrose density gradient centrifugation. Optimal conditions for the ecdysone 20-monooxygenase assay have been determined. The enzyme has a Km for ecdysone of 2.7 x 10(-7) M and is competitvely inhibited by ecdysterone (Ki = 7.5 x 10(-7) M). Ecdysone 20-monooxygenase is a typical cytochrome P-450 linked monooxygenase: the reaction requires O2 and is inhibited by CO, an effect partially reversed by white light. The enzyme is effectively inhibited by several specific monooxygenase inhibitors and by sulfhydryl reagents, but not by cyanide ions. Ecdysone elicits a type I difference spectrum when added to oxidized microsomes. NADPH acts as preferential electron donor. The transfer of reducing equivalents proceeds through NADPH cytochrome c (P-450) reductase: ecdysone 20-monooxygenase is inhibited by cytochrome c. Both NADPH cytochrome c reductase and ecdysone 20-monooxygenase are inhibited by NADP+ and show a similar Km for NADPH. The Malpighian tubules have the highest specific activity of ecdysone 20-monooxygenase, while fat body contain most of the cytochrome P-450 and NADPH cytochrome c reductase.  相似文献   

18.
As CYP1A enzymes are induced by certain contaminants, their induction pattern has been used as a biomarker for exposure of certain pollutants. Ethoxyresorufin O-deethylase (EROD) activities are widely used in environmental assessments of polychlorinated biphenyls in many wildlife species. The EROD activity, a typical probe for CYP1A enzyme was studied in liver microsomes prepared from Adélie penguins (Pygoscelis adeliae) (n=10). Penguin liver microsomes (0.5 mg/mL) were incubated with the substrate ethoxyresorufin and NADPH at 37 degrees C for 10 min, and the reaction was terminated by addition of methanol. The formation of the metabolite resorufin was assayed by an HPLC method. EROD activity was present in all liver samples studied. Penguin liver microsomal fraction exhibits typical Michaelis-Menten kinetics in the O-deethylation of ethoxyresorufin. The data were best described by a biphasic kinetic model, which could be interpreted in terms of two populations of CYP enzyme. Mean (+/-S.D.) K(m) values for high- and low-affinity components of EROD were 51+/-109 (range: 0.16 to 358) and 872+/-703 (range: 303 to 2450) nM, respectively. The corresponding mean V(max) values for the high- and low-affinity enzyme activities were 1.8+/-1.4 (range: 0.21 to 5.1) and 9.6+/-3.7 (range: 6.0 to 18.3) pmol/min/mg. The EROD activity in penguin liver microsomes was inhibited by CYP1A inhibitors (phenacetin, 7-ethoxycoumarin and proportional variant-naphthoflavone), whereas other CYP inhibitors for CYP2C9 (tolbutamide), 2C19 (mephenytoin), 2D6 (debrisoquin) and 2E1 (diethyldithiocarbamate) had no effect. These results suggest that CYP1A-like enzymes are present in penguin livers. The activity of this enzyme may be a useful biomarker for assessing the environmental impact of pollutants on Antarctic wildlife.  相似文献   

19.
Heterologous expression of CYP73A5, an Arabidopsis cytochrome P450 monooxygenase, in baculovirus-infected insect cells yields correctly configured P450 detectable by reduced CO spectral analysis in microsomes and cell lysates. Co-expression of a housefly NADPH P450 reductase substantially increases the ability of this P450 to hydroxylate trans-cinnamic acid, its natural phenylpropanoid substrate. For development of high-throughput P450 substrate profiling procedures, membrane proteins derived from cells overexpressing CYP73A5 and/or NADPH P450 reductase were incorporated into soluble His(6)-tagged nanoscale lipid bilayers (Nanodiscs) using a simple self-assembly process. Biochemical characterizations of nickel affinity-purified and size-fractionated Nanodiscs indicate that CYP73A5 protein assembled into Nanodiscs in the absence of NADPH P450 reductase maintains its ability to bind its t-cinnamic acid substrate. CYP73A5 protein co-assembled with P450 reductase into Nanodiscs hydroxylates t-cinnamic acid using reduced pyridine nucleotide as an electron source. These data indicate that baculovirus-expressed P450s assembled in Nanodiscs can be used to define the chemical binding profiles and enzymatic activities of these monooxygenases.  相似文献   

20.
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus?metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号