首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

2.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

3.
The mechanism of recognition of proteins and peptides by antibodies and the factors determining binding affinity and specificity are mediated by essentially the same features. However, additional effects of the usually unfolded and flexible solution structure of peptide ligands have to be considered. In an earlier study we designed and optimized six peptides (pepI to pepVI) mimicking the discontinuous binding site of interleukin-10 for the anti-interleukin-10 monoclonal antibody (mab) CB/RS/1. Three of them were selected for analysis of their solution conformation by circular dichroism measurements. The peptides differ in the content of alpha-helices and in the inducibility of helical secondary structures by trifluoroethanol. These properties, however, do not correlate with the binding affinity. PepVI, a 32-mer cyclic epitope mimic, has the highest affinity to mab CB/RS/1 identified to date. CD difference spectroscopy suggests an increase of the alpha-helix content of pepVI with complex formation. Binding of pepVI to mab CB/RS/1 is characterized by a large negative, favorable binding enthalpy and a smaller unfavorable loss of entropy (DeltaH degrees = -16.4 kcal x mol(-1), TDeltaS degrees = -6.9 kcal x mol(-1)) resulting in DeltaG degrees = -9.5 kcal x mol(-1) at 25 degrees C as determined by isothermal titration calorimetry. Binding of pepVI is enthalpically driven over the entire temperature range studied (10-35 degrees C). Complex formation is not accompanied by proton uptake or release. A negative heat capacity change DeltaC(p) of -0.354 kcal x mol(-1) x K(-1) was determined from the temperature dependence of DeltaH degrees. The selection of protein mimics with the observed thermodynamic properties is promoted by the applied identification and iterative optimization procedure.  相似文献   

4.
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.  相似文献   

5.
Retroviruses employ -1 translational frameshifting to regulate the relative concentrations of structural and non-structural proteins critical to the viral life cycle. The 1.6 A crystal structure of the -1 frameshifting pseudoknot from beet western yellows virus reveals, in addition to Watson-Crick base-pairing, many loop-stem RNA tertiary structural interactions and a bound Na(+). Investigation of the thermodynamics of unfolding of the beet western yellows virus pseudoknot reveals strongly pH-dependent loop-stem tertiary structural interactions which stabilize the molecule, contributing a net of DeltaH approximately -30 kcal mol(-1) and DeltaG degrees (37) of -3.3 kcal mol(-1) to a total DeltaH and DeltaG degrees (37) of -121 and -16 kcal mol(-1), respectively, at pH 6.0, 0.5 M K(+) by DSC. Characterization of mutant RNAs supports the presence of a C8(+).G12-C26 loop 1-stem 2 base-triple (pK(a)=6.8), protonation of which contributes nearly -3.5 kcal mol(-1) in net stability in the presence of a wild-type loop 2. Substitution of the nucleotides in loop 2 with uridine bases, which would eliminate the minor groove triplex, destroys pseudoknot formation. An examination of the dependence of the monovalent ion and type on melting profiles suggests that tertiary structure unfolding occurs in a manner quantitatively consistent with previous studies on the stabilizing effects of K(+), NH(4)(+) and Na(+) on other simple duplex and pseudoknotted RNAs.  相似文献   

6.
Proton NMR studies are reported on the complementary d(C-A-T-G-G-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dG 9-mer duplex), which contains exocyclic adduct 1,N6-ethenodeoxyadenosine positioned opposite deoxyguanosine in the center of the helix. The present study focuses on the alignment of dG5 and epsilon dA14 at the lesion site in the epsilon dA.dG 9-mer duplex at neutral pH. This alignment has been characterized by monitoring the NOEs originating from the NH1 proton of dG5 and the H2, H5, and H7/H8 protons of epsilon dA14 in the central d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment of the epsilon dA.dG 9-mer duplex. These NOE patterns establish that epsilon dA14 adopts a syn glycosidic torsion angle that positions the exocyclic ring toward the major groove edge while all the other bases including dG5 adopt anti glycosidic torsion angles. We detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(G4-G5-G6).d(C13-epsilon A14-C15) trinucleotide segment which establish formation of right-handed helical conformations on both strands and stacking of the dG5(anti).epsilon dA14(syn) pair between stable dG4.dC15 and dG6.dC13 pairs. The energy-minimized conformation of the central d(G4-G5-G6).d(C13-epsilon A14-C15) segment establishes that the dG5(anti).epsilon dA14(syn) alignment is stabilized by two hydrogen bonds from the NH1 and NH2-2 of dG5(anti) to N9 and N1 of epsilon dA14(syn), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Amukele TK  Schramm VL 《Biochemistry》2004,43(17):4913-4922
Ricin toxin A-chain (RTA) is the catalytic subunit of ricin, a heterodimeric toxin from castor beans. Its ribosomal inactivating activity arises from depurination of a single adenine from position A(4324) in a GAGA tetraloop from 28S ribosomal RNA. Minimal substrate requirements are the GAGA tetraloop and stem of two or more base pairs. Depurination activity also occurs on stem-loop DNA with the same sequence, but with the k(cat) reduced 200-fold. Systematic variation of RNA 5'-G(1)C(2)G(3)C(4)[G(5)A(6)G(7)A(8)]G(9)C(10)G(11)C(12)-3' 12mers via replacement of each nucleotide in the tetraloop with a deoxynucleotide showed a 16-fold increase in k(cat) for A(6) --> dA(6) but reduced k(cat) up to 300-fold for the other sites. Methylation of individual 2'-hydroxyls in a similar experiment reduced k(cat) by as much as 3 x 10(-3)-fold. In stem-loop DNA, replacement of d[G(5)A(6)G(7)A(8)] with individual ribonucleotides resulted in small kinetic changes, except for the dA(6) --> A(6) replacement for which k(cat) decreased 6-fold. Insertion of d[G(5)A(6)G(7)A(8)] into an RNA stem-loop or G(5)A(6)G(7)A(8) into a DNA stem-loop reduced k(cat) by 30- and 5-fold, respectively. Multiple substitutions of deoxyribonucleotides into RNA stem-loops in one case (dG(5),dG(7)) decreased k(cat)/K(m) by 10(5)-fold, while a second change (dG(5),dA(8)) decreased k(cat) by 100-fold. Mapping these interactions on the structure of GAGA stem-loop RNA suggests that all the loop 2'-hydroxyl groups play a significant role in the action of ricin A-chain. Improved binding of RNA-DNA stem-loop hybrids provides a scaffold for inhibitor design. Replacing the adenosine of the RTA depurination site with deoxyadenosine in a small RNA stem-loop increased k(cat) 20-fold to 1660 min(-1), a value similar to RTA's k(cat) on intact ribosomes.  相似文献   

8.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

9.
A conformational transition of a single deoxyribose was analyzed in B-form trimers dA3:dT3 and dG3:dC3, both in the purine and pyrimidine chains. The main results were obtained for the duplexes with frozen ends, which could be extended by regular double helixes. The geometry of the central sugar ring in the duplexes may strongly deviate from the regular conformation. When deoxyribose changed its conformation in the central pyrimidine, the energy increase was proved to be less significant in comparison with that for purine. In the case of Thy, a decrease in pseudorotation angle P from 140 to 80 degrees causes the energy increase of 0.5 kcal/mol only, the barrier being 1.2 kcal/mol. The energy profile for Cyt has several local minima. The results of calculations were compared with numerous experimental data, they help to explain some NMR data. A perturbation of the duplex AAA:TTT structure caused by the thymine sugar ring transition, produces 5 degrees bend of the DNA axis directed toward adenines. We also investigated the influence of such conformational disturbance on the neighbouring base pairs, in particular the transition in the trimers with unfrozen ends.  相似文献   

10.
A G Kozlov  T M Lohman 《Biochemistry》1999,38(22):7388-7397
Isothermal titration calorimetry (ITC) was used to test the hypothesis that the relatively small enthalpy change (DeltaHobs) and large negative heat capacity change (DeltaCp,obs) observed for the binding of the Escherichia coli SSB protein to single-stranded (ss) oligodeoxyadenylates result from the temperature-dependent adenine base unstacking equilibrium that is thermodynamically coupled to binding. We have determined DeltaH1,obs for the binding of 1 mole of each of dT(pT)34, dC(pC)34, and dA(pA)34 to the SSB tetramer (20 mM NaCl at pH 8.1). For dT(pT)34 and dC(pC)34, we found large, negative values for DeltaH1,obs of -75 +/- 1 and -85 +/- 2 kcal/mol at 25 degrees C, with DeltaCp,obs values of -540 +/- 20 and -570 +/- 30 cal mol-1 K-1 (7-50 degrees C), respectively. However, for SSB-dA(pA)34 binding, DeltaH1,obs is considerably less negative (-14 +/- 1 kcal/mol at 25 degrees C), even becoming positive at temperatures below 13 degrees C, and DeltaCp,obs is nearly twice as large in magnitude (-1180 +/- 40 cal mol-1 K-1). These very different thermodynamic properties for SSB-dA(pA)34 binding appear to result from the fact that the bases in dA(pA)34 are more stacked at any temperature than are the bases in dC(pC)34 or dT(pT)34 and that the bases become unstacked within the SSB-ssDNA complexes. Therefore, the DeltaCp,obs for SSB-ssDNA binding has multiple contributions, a major one being the coupling to binding of a temperature-dependent conformational change in the ssDNA, although SSB binding to unstacked ssDNA still has an "intrinsic" negative DeltaCp,0. In general, such temperature-dependent changes in the conformational "end states" of interacting macromolecules can contribute significantly to both DeltaCp,obs and DeltaHobs.  相似文献   

11.
We have determined the effect of the tryptophan (trp) repressor from Escherichia coli on the structure and dynamics of dA20dT20. The structure was determined using time-dependent nuclear Overhauser effects and spin-lattice relaxation times. The deoxyribose conformation is near C3' endo for the thymine residues, and a mixture of about 30% C3' endo and 70% C2' endo for the adenine residues. The glycosidic torsion angles are -50 degrees for T and -60 degrees for A. The roll is 20 degrees and the propellor twist is about 29 degrees. The conformation is consistent with recent calculations (Rao, K. and Kollman, P.A. (1985) J. Am. Chem. Soc. 107, 1507-1511). The rate constant for exchange of the imino protons is similar to that usually found for AT base-pairs, with an activation energy of 20 +/- 2 kcal/mol, and an activation entropy of 17 +/- 7 cal/mol per K. The repressor greatly retards the exchange of imino protons, and the activation energy increases to 38 kcal/mol. There are small changes in the structure of the DNA on forming the complex, with the adenine and thymidine residues becoming more similar in conformation.  相似文献   

12.
In neutral solution, 5,6-dihydrocytidine undergoes spontaneous deamination (k25 approximately 3.2 x 10(-5) s(-1)) much more rapidly than does cytidine (k25 approximately 3.0 x 10(-10) s(-1)), with a more favorable enthalpy of activation (DeltaDeltaH# = -8.7 kcal/mol) compensated by a less favorable entropy of activation (TDeltaDeltaS# = -1.8 kcal/mol at 25 degrees C). E. coli cytidine deaminase enhances the rate of deamination of 5,6-dihydrocytidine (kcat/k(non) = 4.4 x 10(5)) by enhancing the entropy of activation (DeltaDeltaH# = 0 kcal/mol; TDeltaDeltaS# = +7.6 kcal/mol, at 25 degrees C). Binding of the competitive inhibitor 3,4,5,6-tetrahydrouridine (THU), a stable analogue of 5,6-dihydrocytidine in the transition state for its deamination, is accompanied by a release of enthalpy (DeltaH = -7.1 kcal/mol, TDeltaDeltaS = +2.2 kcal/mol) that approaches the estimated enthalpy of binding of the actual substrate in the transition state for deamination of 5,6-dihydrocytidine (DeltaH = -8.1 kcal/mol, TDeltaDeltaS = +6.0 kcal/mol). Thus, the shortcomings of THU in capturing all of the binding affinity expected of an ideal transition-state analogue reflect a less favorable entropy of association. That difference may arise from the analogue's inability to displace a water molecule from the "leaving group site" at which ammonia is generated in the normal reaction. The effect on binding of removing the 4-OH group from the transition-state analogue THU, to form 3,4,5,6-tetrahydrozebularine (THZ) (DeltaDeltaH = -2.1 kcal/mol, TDeltaDeltaS = -4.4 kcal/mol), is mainly entropic, consistent with the inability of THZ to displace water from the "attacking group site". These results are consistent with earlier indications [Snider, M. J., and Wolfenden, R. (2001) Biochemistry 40, 11364] that site-bound water plays a prominent role in substrate activation and inhibitor binding by cytidine deaminase.  相似文献   

13.
A ribonuclease that specifically hydrolyzes RNA in RNA. DNA hybrids has been purified more than 100-fold from human acute leukemic white blood cells. The molecular weight of this enzyme has been estimated as 80,000 by glycerol gradient centrifugation. It requires Mg-2plus for activity and is inhibited by N-ethylmaleimide. The optimum activity is observed at pH 8 (37 DEGREES). It is a heat-labile protein, t 1/2 at 50 degrees being 2 min. Among the substrates examined, (A)n X (dT)m, (I)n X (DC)m, and PHIX-174 DNA X RNA were hydrolyzed efficiently. (U)n X (dA)m showed a slight substrate activity, while (c) n X (dG) m and (G)n X (dC)m were not significantly hydrolyzed. The enzyme is an endonuclease and does not require RNA ends in the substrate molecule. It is capable of converting more than 95% of the RNA portions in hybrid substrates into acid-soluble products which are mono- and oligonucleotides terminated in 3'-OH and 5'-phosphate.  相似文献   

14.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.  相似文献   

15.
The capacity to assume a left-handed conformation and the thermodynamics of loop formation in concentrated aqueous NaClO4 have been investigated for the following palindromic sequences: d-(CGCGCGAAAAACGCGCG) (A5), d(CGCGCGTTTTTCGCGCG) (T5), d(CGCGCGTACGCGCG) (TA), and d(CGCGCGATCGCGCG) (AT). The results show that (a) each oligomer assumes a Z conformation upon exposure to increasing NaClO4 concentrations; the salt concentration at the transition midpoint is 1.8 M for both A5 and T5 and 3 and 3.5 M for TA and AT, respectively; (b) in high salt the four oligomers exist, over a wide range of nucleotide concentrations (up to 10(-3) M) and of temperature (greater than 0 degrees C), as unimolecular hairpin structures; (c) hairpins TA and AT exhibit, in buffer A, a lower thermal stability with respect to A5 and T5 (delta T about 16 degrees C), contrary to what is observed at low ionic strength; (d) on hairpin formation, the enthalpic term is about -52 kcal/mol for the two 17-mers and -38 kcal/mol for the two 14-mers, while the change in entropy is found to be around -150 eu for A5 and T5 and -115 eu for TA and AT. This thermodynamic picture suggests that a two-residue loop for TA and AT, found at low ionic strength [see preceding paper (Xodo, L.E., Manzini, G., Quadrifoglio, F., van der Marel, G.A., & van Boom, J.H. (1988) Biochemistry (preceding paper in this issue)], is substituted by a longer one including two additional residues from a missing dC.dG base pairing at the top of the stem.  相似文献   

16.
K B Hall  L W McLaughlin 《Biochemistry》1991,30(44):10606-10613
Four pentamers with the general sequence 5'CU(T)GU(T)G/5'CACAG have been prepared by chemical synthesis in order to generate duplex structures with common sequences. The four duplexes studied include the DNA.DNA duplex (5'dCACAG/5'dCTGTG) and the RNA.RNA duplex (5'rCUGUG/5'rCACAG) as well as the two corresponding DNA.RNA heteroduplexes (5'rCUGUG/5'dCACAG and 5'CACAG/5'dCTGTG). The measured entropy, enthalpy, and free energy changes upon melting are reported for each pentamer and compared to the predicted values where possible. Results show that the two DNA.RNA heteroduplexes are destabilized (delta G degrees 25 = -4.2 +/- 0.4 kcal/mol) relative to either the DNA.DNA duplex (delta G degrees 25 = -4.8 +/- 0.5 kcal/mol) or the RNA.RNA duplex (delta G degrees 25 = -5.8 +/- 0.6 kcal/mol). Circular dichroism spectra indicate that the RNA and the two heteroduplexes adopt an A-form conformation, while the DNA conformation is B-form. Imino proton NMR spectra also show that the heteroduplex structures resemble the RNA.RNA duplex.  相似文献   

17.
Fapy.dG is produced in DNA as a result of oxidative stress. Under some conditions Fapy.dG is formed in greater yields than 8-oxodG from a common chemical precursor. Recently, Fapy.dG and its C-nucleoside analogue were incorporated in chemically synthesized oligonucleotides at defined sites. Like 8-oxodG, Fapy.dG instructs DNA polymerase to misincorporate dA opposite it in vitro. The interactions of DNA containing Fapy.dG or the nonhydrolyzable analogue with Fpg and MutY are described. Fpg excises Fapy.dG (K(M) = 2.0 nM, k(cat) = 0.14 min(-1)) opposite dC approximately 17-fold more efficiently than when mispaired with dA, which is misinserted by DNA polymerase in vitro. Fpg also prefers to bind duplexes containing Fapy.dG.dC or beta-C-Fapy.dG.dC compared to those in which the lesion is opposite dA. MutY incises dA when it is opposite Fapy.dG and strongly binds duplexes containing the lesion or beta-C-Fapy.dG. Incision from Fapy.dG.dA is faster than from dG.dA mispairs but slower than from DNA containing 8-oxodG opposite dA. These data demonstrate that Fapy.dG closely resembles the interactions of 8-oxodG with two members of the GO repair pathway in vitro. The similar effects of Fapy.dG and 8-oxodG on DNA polymerase and repair enzymes in vitro raise the question as to whether Fapy.dG elicits similar effects in vivo.  相似文献   

18.
H Takashima  M Nakanishi  M Tsuboi 《Biochemistry》1985,24(18):4823-4825
The kinetics of the hydrogen-deuterium exchange reactions of poly(dA).poly(rU) and poly(rA).poly(dT) has been examined, at pH 7.0 and at various temperatures in the 15-35 degrees C range, by stopped-flow ultraviolet spectrophotometry. For comparison, the deuteration kinetics of poly[d(A-T)].poly[d(A-T)] and poly(rA).poly(rU) has been reexamined. At 20 degrees C, the imino deuteration (NH----ND) rates of the two hybrid duplexes were found to be 1.5 and 1.8 s-1, respectively. These are nearly equal to the imino deuteration rates of poly[d(A-T)].poly[d(A-T)] (1.1 s-1) and poly(rA).poly(rU) (1.5 s-1) but appreciably higher than that of poly(dA).poly(dT) (0.35 s-1). It has been suggested that a DNA.RNA hybrid, an RNA duplex, and the AT-alternating DNA duplex have in general higher base-pair-opening reaction rates than the ordinary DNA duplex. The amino deuteration (NH2----ND2) rates, on the other hand, have been found to be 0.25, 0.28, and 0.33 s-1, respectively, for poly(dA).poly(rU), poly(rA).poly(dT), and poly[d(A-T)].poly[d(A-T)], at 20 degrees C. These are appreciably higher than that for poly(rA).poly(rU) (0.10 s-1). In general, the equilibrium constants (K) of the base-pair opening are considered to be greatest for the DNA.RNA hybrid duplex (0.05 at 20 degrees C), second greatest for the RNA duplex (0.02 at 20 degrees C), and smallest for the DNA duplex (0.005 at 20 degrees C), although the AT-alternating DNA duplex has an exceptionally great K (0.07 at 20 degrees C). From the temperature effect on the K value, the enthalpy of the base-pair opening was estimated to be 3.0 kcal/mol for the DNA.RNA hybrid duplex.  相似文献   

19.
Guanosine triphosphate nucleotide analogues such as GppNHp (also named GMPPNP) or GTPgammaS are widely used to stabilize rapidly hydrolyzing protein-nucleotide complexes and to investigate biochemical reaction pathways. Here we describe the chemical synthesis of guanosine 5'-O-(gamma-amidotriphosphate) (GTPgammaNH(2)) and a new synthesis of guanosine 5'-O-(gamma-fluorotriphosphate) (GTPgammaF). The two nucleotides were characterized using NMR spectroscopy and isothermal titration calorimetry. Chemical shift data on (31)P, (19)F and (1)H NMR resonances are tabulated. For GTPgammaNH(2) the enthalpy of magnesium coordination is DeltaH degrees = 3.9 kcal.mol(-1) and the association constant K(a) is 0.82 mm(-1). The activation energy for GTPgammaNH(2).Mg2+ complex formation is DeltaH++ = 7.8 +/- 0.15 kcal.mol(-1), similar to that for the natural substrate GTP. For GTPgammaF we obtained a similar enthalpy of DeltaH degrees = 3.9 kcal.mol(-1) while the magnesium association constant is only K(a) = 0.2 mm(-1). The application of both guanine nucleotide analogues to the GTP-binding protein Ras was investigated. The rate of hydrolysis of GTPgammaNH(2) bound to Ras protein lay between the rates found for Ras-bound GTPgammaS and GppNHp, while Ras-catalysed hydrolysis of GTPgammaF was almost as fast as for GTP. The two compounds extend the variety of nucleotide analogues and may prove useful in structural, kinetic and cellular studies.  相似文献   

20.
Photoacoustic calorimetry and transient absorption spectroscopy were used to study conformational dynamics associated with CO photodissociation from horse heart myoglobin (Mb) reconstituted with either Fe protoporphyrin IX dimethylester (FePPDME), Fe octaethylporphyrin (FeOEP), or with native Fe protoporphyrin IX (FePPIX). The volume and enthalpy changes associated with the Fe-CO bond dissociation and formation of a transient deoxyMb intermediate for the reconstituted Mbs were found to be similar to those determined for native Mb (DeltaV1 = -2.5+/-0.6 ml mol(-1) and DeltaH1 = 8.1+/-3.0 kcal mol(-1)). The replacement of FePPIX by FeOEP significantly alters the conformational dynamics associated with CO release from protein. Ligand escape from FeOEP reconstituted Mb was determined to be roughly a factor of two faster (tau=330 ns) relative to native protein (tau=700 ns) and accompanying reaction volume and enthalpy changes were also found to be smaller (DeltaV2 = 5.4+/-2.5 ml mol(-1) and DeltaH2 = 0.7+/-2.2 kcal mol(-1)) than those for native Mb (DeltaV2 = 14.3+/-0.8 ml mol(-1) and DeltaH2 = 7.8+/-3.5 kcal mol(-1)). On the other hand, volume and enthalpy changes for CO release from FePPIX or FePPDME reconstituted Mb were nearly identical to those of the native protein. These results suggest that the hydrogen bonding network between heme propionate groups and nearby amino acid residues likely play an important role in regulating ligand diffusion through protein matrix. Disruption of this network leads to a partially open conformation of protein with less restricted ligand access to the heme binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号