首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphokine-activated killer (LAK) cells can lyse a number of tumor target cells regardless of whether the tumors are natural killer (NK) sensitive or resistant. LAK can also lyse autologous lymphoblasts that have been modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS). In this study, we examined the surface markers of murine LAK precursors. It was found that depletion of Thy 1- or Lyt 2-bearing precursor cells abolished the ability of spleen cells to generate LAK against TNBS-self, but had no effect on the generation of LAK against tumor cells. Depletion of asialo-GM1 (AGM1)-bearing precursors abolished the generation of LAK against all target cells tested. Normal spleen cells were fractionated on a Percoll density gradient and two fractions were examined: fraction (Fxn) 3, which is enriched for NK activity but depleted of the ability to generate cytotoxic T lymphocytes (CTL), and Fxn 5, which had no NK activity but was enriched for the ability to generate CTL. Both fractions were capable of generating LAK, although Fxn 5 required a relatively larger amount of interleukin 2 (IL 2). Upon examination of the surface markers of LAK precursors in these fractions it was found that the precursors in Fxn 3 giving rise to LAK against tumors were Thy-1-, Lyt-2-, AGM1+, whereas the precursors in Fxn 5 were Thy-1+, Lyt-2+, AGM1+. The precursors generating LAK against TNBS-self were Thy-1+, Lyt-2+, AGM1+ in both fractions. The time kinetics of LAK generation in both fractions were different, with Fxn 3 showing much earlier kinetics. These data delineate at least two different LAK precursors defined by their buoyant density, by their surface markers, and by their susceptible target cells. These data also may resolve the confusion in the literature regarding the phenotype of LAK precursors.  相似文献   

2.
Antibodies specific for the CD3 complex have the capacity to both stimulate and inhibit a variety of T cell functions. We show here that a monoclonal antibody to the epsilon chain of CD3 can induce efficient non-MHC-restricted cytolytic activity in murine lymphocytes with peak activity occurring after 48 hr of incubation. In a panel of targets, the anti-CD3-activated effectors lysed tumor cells but not normal lymphoblasts. Cytolysis was not dependent on the presence of the antibody in the cytolytic assay. Moderate to high cytolytic activity was elicited from lymph nodes, spleen, and thymus by anti-CD3 treatment in vitro, whereas only low activity was apparent in bone marrow. The precursors of anti-CD3-activated cells consisted largely of mature T cells, although a smaller component of immature T cells was also involved. Thus, separation of thymocytes based on adhesion to peanut agglutinin revealed that both positive (immature) and negative (mature) fractions could be activated, while cytotoxic pretreatment of spleen cells with an antibody (J11d) to immature T cells before anti-CD3 activation significantly decreased the resulting cytotoxicity. The majority of precursors in spleen were Thy 1+ and CD8+ and/or AGM1+. Antibody depletion studies showed that the effector cells have both a T and a NK component consisting of Thy 1+, CD5+, CD8+, CD4-, and AGM1- cells and Thy 1-, CD5-, CD8-, CD4-, and AGM1+ cells, respectively. The production of significant amounts of IL-2 and TNF in culture following anti-CD3 treatment, along with the synergistic effect of exogenously added IL-2, suggests that one or both of the effector cell types could be induced by lymphokines. The intraperitoneal administration of the anti-CD3 antibody induces cytolytic activity in vivo. Therefore, the direct activation of cytolysis by anti-CD3 antibody and the additional effects, both direct and synergistic, of lymphokines produced by the activated lymphocytes could conceivably provide a potent anti-tumor therapy.  相似文献   

3.
The induction of cytotoxic T lymphocytes (CTL) from CTL precursors requires a combination of antigen and lymphokine signals. To investigate lymphokine requirements for CTL generation, we used an assay in which helper T cell and accessory cell-depleted spleen cells or whole thymocytes were cultured with lectin (Con A) and lymphokines. This culture was followed by assessment of lectin-dependent cytolysis. High concentrations of recombinant interleukin 2 (R-IL 2) (100 U/ml) alone were not sufficient for lectin-mediated CTL induction from thymocytes, whereas 20 to 100 U/ml of R-IL 2 alone could induce a significant lectin-mediated CTL response from accessory cell-depleted spleen cells. Using thymocytes as responders, we found purified or recombinant interferon-gamma (IFN-gamma) did not cause cytolytic activity either in the absence of or in the presence of R-IL 2. However, supernatant from Con A-stimulated rat spleen cells (rat Con A SN) in combination with R-IL 2 could induce cytolytic activity, suggesting that several factors are required for CTL induction. Con A SN was fractionated by gel filtration and the fractions were tested for ability to induce CTL. In the presence of a low level of R-IL 2 (5 U/ml), fractions with a Mr of approximately 31,000 could induce CTL, and this activity was referred to as CTL differentiation factor (CDF). The peak fractions containing CDF activity did not have detectable IL 1, IL 2, IFN-gamma, or CSF activity. However, by add-back experiments and the use of blocking antibodies, a monoclonal antibody against the IL 2 receptor or antibodies against murine IFN-gamma, we demonstrated that CTL induction from mature thymocytes (L3T4-, Lyt-2+) requires CDF activity in addition to IL 2 and IFN-gamma.  相似文献   

4.
The cytotoxic activity of alloreactive cytotoxic T lymphocytes (CTL) was maintained and augmented by transferring cells from a 5-day mixed lymphocyte culture MLC into a host culture (HC) containing indomethacin, freshly explanted normal spleen cells, and peritoneal cells which were syngeneic to the MLC cells. The MLC cells used in the transfer experiments were generated by culturing untreated H-2b splenic responders with irradiated H-2d stimulators, or were generated by culturing Lyt-2-depleted H-2b splenic responders with irradiated H-2d stimulators. The allo-CTL were found to be derived from the donor MLC (first culture) when unfractionated MLC cells were transferred into a host (second) culture and incubated for 5 days. In contrast, the allo-CTL were derived from host culture cells when Lyt-2-depleted MLC cells were transferred and the combined cultures incubated for 5 days. In the former case, the augmentation of MLC-derived cytotoxicity did not result from nonspecific expansion of all donor T cells; instead it was mediated by lymphokine(s), distinct from IL-2, produced by helper T cells generated in host culture, which appeared to selectively expand the antigen-specific CTL or to increase the cytotoxic activity of these CTL. The helper T cells were Thy-1+, L3T4+, and Lyt-2-. These findings indicate that antigen-nonspecific help was provided by helper cells or helper factors (lymphokines) generated in the host culture, which maintained and augmented the cytotoxic activity of the fully generated allo-CTL. This helper effect was also seen in the induction of primary allo-CTL responses which could be generated with fewer stimulating cells and with a stronger cytotoxic response at different R/S ratios tested. The generation of allo-CTL in second culture following transfer of Lyt-2-depleted MLC cells to host cultures appears to have involved antigen carryover from the MLC; however, antigen carryover alone was not sufficient. It appears that in the absence of Lyt-2+ suppressor T cells, antigen-specific help might be generated in donor cultures (Lyt-2-depleted MLC) which promoted or recruited the generation of antigen-specific CTL in host culture.  相似文献   

5.
This study demonstrated that T cell differentiation factor (TCDF) was produced in syngeneic lymphocyte-macrophage cultures. Conditioned medium containing TCDF and interleukin 2 (IL 2) induced the differentiation of leukoagglutinin (LA)-activated cytotoxic T lymphocyte precursors (CTLp) into cytotoxic T lymphocyte (CTL) effectors. The production of TCDF and IL 2 peaked at day 4 to 5 in cultures containing normal spleen cells, syngeneic peritoneal macrophages, and indomethacin. Macrophages and T cells with Thy-1+, L3T4+, and Lyt-2- phenotype were needed for TCDF production. There was no requirement for xenogeneic serum in the culture medium; thus, TCDF could be produced in a syngeneic system. Recognition of self Ia molecules appeared to be essential for TCDF production, which was completely abolished by the addition of monoclonal anti-Ia antibody. In our experiments, removal of IL 2 from conditioned medium containing TCDF abolished its ability to generate LA-activated CTL. However, the cytotoxic response could be restored by the addition of a small amount (5 U/ml) of purified human recombinant IL 2 (HRIL 2), which alone was unable to generate LA-activated CTL at this dose. The generation of LA-activated CTL by high dose HRIL 2 (greater than 50 U/ml) was likely due to the endogenous production of TCDF. The bulk of TCDF could be separated from IL 2 by gel filtration in a Sephadex G-100 column. The peak of TCDF activity was concentrated at a m.w. of 16K dalton, and there was very little IL 2 activity in these fractions. When added alone to the LA-activated lymphocyte cultures, these active fractions were unable to induce CTL; supplementation of exogenous IL 2 was needed to restore the cytotoxic responses. Our findings indicate that both IL 2 and TCDF, which are needed in CTL generation. are produced in syngeneic cultures in the absence of antigenic or mitogenic stimulation.  相似文献   

6.
A newly induced syngeneic transplantable sarcoma, MCA 105, was used for studies of the biologic characteristics of fresh noncultured and secondarily in vitro sensitized (IVS) cells with antitumor reactivity. Fresh spleen cells harvested from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum exhibited no detectable cytotoxic activity to MCA 105 tumor targets in a 4-hr chromium-release assay, and adoptive transfer of these cells mediated the specific regression of established MCA 105 tumors. Phenotypic analysis of fresh, noncultured immune cells revealed that the therapeutically effective cells expressed both the Lyt-1 and the Lyt-2 T cell differentiation antigens. The therapeutic efficacy of fresh noncultured immune cells was not augmented by the concomitant administration of exogeneous interleukin 2 (IL 2). Secondary IVS of fresh immune cells with irradiated MCA 105 tumor stimulator cells resulted in the generation of tumor-specific cytotoxic effector cells. The generation of cytotoxic effector cells required Lyt-1+, 2+ cytotoxic precursor cells. Effective adoptive immunotherapy with these IVS immune cells, unlike fresh noncultured immune cells, depended on the concomitant administration of IL 2. Furthermore, the generation of therapeutically effective cells did not require the specific stimulation by MCA 105 tumor cells, because cultures of MCA 105 immune spleen cells with FBL-3 lymphoma cells in vitro also contained in vivo functional immune effector cells. These cells, however, possessed no detectable MCA 105 cytotoxic activity in vitro. Although this observation suggests that a noncytotoxic cell population is sufficient to initiate tumor regression in vivo, it does not exclude the possibility that cytolytic cells are generated in vivo after adoptive transfer of these cells. As a whole, our results indicate that secondary IVS functional immune effector cells are characteristically distinct from freshly harvested immune cells.  相似文献   

7.
B cell stimulatory factor 1 (BSF-1) (IL-4) was shown to synergize with phorbol esters or with monoclonal anti-TCR antibody in stimulation of the development of CTL from small resting murine T cells. IL-2 also synergized with PMA in such differentiation but was less effective than BSF-1. The combination of these two lymphokines with PMA had the most potent effect on the development of CTL. BSF-1 plus PMA stimulated a significant increase in the intracellular content of N-benzyloxycarbonyl-L-lysine thiobenzylester esterase, a granule-associated biochemical marker, whereas IL-2 plus PMA was only marginally effective. Depletion of L3T4+ cells did not result in the abrogation of these effects. Lyt-2+ T cells that were incubated for 72 h with BSF-1 plus PMA accumulated N-benzyloxycarbonyl-L-lysine thiobenzylester esterase and secreted this intragranular marker after interaction with immobilized anti-T cell receptor mAb. These BSF-1/PMA-stimulated Lyt-2+, L3T4- T cells were also able to kill FcR positive target cells in a retargeting assay with a mAb to murine T3 Ag, providing evidence that BSF-1 plus PMA acted directly on precursors of cytotoxic T cells.  相似文献   

8.
Sensitivity to L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) was used to characterize the phenotype of human activated killer cells. Natural killer cells (NK) and the precursors of both the alloantigen-specific cytotoxic T lymphocytes (CTL) and the NK-like activated killer cells generated after stimulation with allogeneic cells were deleted from human peripheral blood lymphocytes by preincubation with Leu-Leu-OMe. It was noted, however, that cytotoxic lymphocytes could be generated from Leu-Leu-OMe-treated lymphocyte precursors after 2 to 6 days of culture with the nonspecific mitogen, phytohemagglutinin (PHA). The characteristics of these killer cells indicated that they were a unique population that could be distinguished from other cytotoxic cells. Killing by these cells exhibited slow kinetics in that 18 hr cytotoxicity assays were required to detect full cytotoxic potential. When 18 hr assays were used, PHA-stimulated cytotoxic cells generated from Leu-Leu-OMe-treated lymphocytes were able to kill both NK-sensitive K562 cells and the relatively NK-resistant renal cell carcinoma cell line, Cur. These cytotoxic lymphocytes were HNK-1, Leu-11b (CD16), and OKM1 (CR3)-negative at both the precursor and effector stage of activation. Furthermore, these cells were derived from a CD3-positive precursor. Finally, killing by activated effectors was inhibited by OKT3. Unlike activation of Leu-Leu-OMe-sensitive large granular lymphocytes, generation of these cytotoxic T cells was totally prevented by treatment with mitomycin c before stimulation. Thus, a unique class of tumoricidal T cells can be characterized by resistance of lymphocyte precursors to a concentration of Leu-Leu-OMe, which has been shown to ablate NK, mixed lymphocyte culture-activated NK-like cytotoxic precursors, and the precursors of alloantigen-specific CTL.  相似文献   

9.
The present study has characterized the short term and long term cultured murine-activated killer (AK) cells that are induced by antibody directed against the epsilon-chain of T3 complex. The conventional lymphokine AK (LAK) cells were generated by culturing normal B6 spleen cells with purified human rIL-2. The alpha T3-induced AK cells (T3AK) were induced by culturing normal B6 spleen cells with alpha T3 and were then maintained in culture medium supplemented with human rIL-2 and/or alpha T3. After initial activation with alpha T3, lymphocyte proliferation and generation of cytotoxic effectors (T3AK) were noted, and these events were related to the endogenous production of IL-2 and IL-4. Addition of alpha IL-2 and/or alpha IL-4 suppressed both the proliferative response and the cytotoxic response induced by alpha T3. In comparing the T3AK cells with the conventional LAK cells, there were many similarities as well as some distinct differences. Both cells displayed a similar cytotoxic spectrum against a variety of tumor targets. The T3AK cells usually gave much higher levels of cytotoxic activity against susceptible targets. However, the susceptibility of different tumor targets to conventional LAK cells and T3AK cells varied. The time course for the generation of lytic activity also differed between the conventional LAK and T3AK cells. One distinct difference was their ability to survive in vitro. The conventional LAK cells survived in culture for only 1 wk. The T3AK cells could survive for at least 4 to 5 wk with active growth. The serologic phenotype of the LAK precursors was asialo GM1 (AsGM1+) cells, but the T3AK precursors could be either AsGM1+ or AsGM1-, depending on the target cell. The LAK effectors were both Lyt-2+ and Lyt-2-, but the short-term T3AK effectors were exclusively Lyt-2+. The long term T3AK cells (cultured for more than 2 wk) were found to consist of Lyt-2+ and Lyt-2- cells, and these subsets of T3AK cells showed different target specificities. These findings demonstrate the heterogeneity of LAK and T3AK cells, and this heterogeneous property may contribute to their diversity in specificity against different tumor targets and thus may affect their effectiveness in the immunotherapy of cancer.  相似文献   

10.
We have studied the possible role of interleukin-1 (IL-1) on the interleukin-2 (IL-2) dependent development of mouse natural killer (NK) cells from primitive bone marrow (BM) precursors. Results indicate that both IL-1 alpha and IL-1 beta (1-10 U/ml) are able to stimulate the generation of NK cells from 5-fluorouracil (5-FU) resistant BM progenitors. These precursor cells are asialoGM1-, Thy-1+, Lyt-1- and Lyt-2-. Effector cells generated by culturing with IL-2 (40 U/ml) and IL-1 (5 U/ml) are Thy-1+, asialoGM1+, Lyt-5+, Lyt-1-, Lyt-2- and lyse only NK-susceptible targets. Generation of NK cells is blocked by addition of anti-IL-2/r. These data indicate that IL-1 may play a role in the generation of mature NK cells from undifferentiated BM precursors.  相似文献   

11.
Antigen-independent activation of memory cytotoxic T cells by interleukin 2   总被引:7,自引:0,他引:7  
Culture supernatants from mitogen- or antigen-activated murine spleen cells are capable of causing reexpression of specific cytolytic activity from inactive memory cytotoxic T lymphocytes (CTL) in the absence of the original priming antigen. We have demonstrated that memory CTL from cytolytically inactive day 14 MLC cells are induced to reexpress high levels of specific cytotoxic activity after incubation with IL 2. Highly purified IL 2 was shown to induce levels of lytic activity comparable with that induced by supernatants from secondary mixed lymphocyte cultures (secondary MLC SN), suggesting that only IL 2 is necessary for the reactivation process. Moreover, only Lyt-2+ cells are necessary for reactivation inasmuch as inactive MLC cells depleted of Lyt-1+ cells by treatment with antibody and complement, followed by FACS selection of Lyt-2+ cells, were efficiently reactivated by IL 2. Because IL 2 is considered a proliferative signal, we examined whether proliferation was requisite for reactivation of memory CTL by IL 2. In the presence of cytosine arabinoside, which effectively inhibited proliferation, IL 2 was capable of reactivating memory CTL as efficiently as antigen, thus implying a differentiative role for IL 2 in secondary CTL activation. Reactivation of CTL by IL 2 and antigen appear to be functionally distinct events, because antigen but not IL 2 could trigger immune interferon release, although either IL 2 or antigen induced high levels of cytotoxicity. We propose that resting, memory CTL retain a heightened level of expression of IL 2 receptors as compared with naive CTL precursors, and thus are able to respond directly to exogenous IL 2. The consequences of this are proliferation and reexpression of specific killing activity, but this signal is not sufficient to induce immune interferon secretion. Rather, it appears that a signal via the antigen receptor is necessary for release of this lymphokine.  相似文献   

12.
Maturation of cytolytic T lymphocytes from nonlytic precursors requires cytokines in addition to IL2. Interleukin-6 is the principal cytokine that cooperates with IL2 in the induction of CTL differentiation from murine and human thymocyte precursors. However, a cytotoxic differentiation factor (CDF) role of IL6 for mature T cells is challenged by data indicating that IL2 alone is sufficient for CTL generation. The aim of this study was to identify a model system in which IL6 acted as a CDF for human peripheral T cells. We noted that IL6 was endogenously produced by CTL clones in the course of their expansion with APC, lectin, and IL2. The majority of several hundred T-cell clones, both CD4+ and CD8+, produced IL6 in response to relatively high doses of IL2. Other experiments that compared the cytolytic function of CTL clones cultured in the presence of IL6 with that of the same clones cultured in the absence of IL6 demonstrated that IL6 contributes to the cytolytic ability of the majority of human CTL clones. Our data suggest that IL6 acts in an autocrine fashion to support CTL differentiation in human T-cell clones.  相似文献   

13.
The systemic administration of high-dose recombinant IL 2 mediated significant reductions of established 3-day pulmonary micrometastases from both weakly immunogenic and nonimmunogenic sarcomas. However, when treatment with IL 2 was delayed for 10 days after the injection of tumor cells in an attempt to treat grossly visible pulmonary macrometastases, only those established from weakly immunogenic sarcomas remained susceptible. Established 10-day pulmonary nodules from the nonimmunogenic sarcomas became refractory to IL 2 therapy. We utilized selective depletion of lymphocyte subsets in vivo by the systemic administration of specific monoclonal antibodies to cells bearing either the L3T4 or Lyt-2 marker or a heteroantiserum to cells bearing the ASGM-1 glycosphingolipid to identify lymphocytes involved in IL 2-induced tumor regression. Cells with potent lymphokine-activated killer (LAK) activity against fresh tumor targets in vitro were identified in the lungs of IL 2-treated mice. By flow cytometry analysis, the majority of these effector cells were Thy-1+, L3T4-, Lyt-2-, ASGM-1+. Depletion in vivo of ASGM-1+ cells before the onset of IL 2 administration eliminated the successful therapy of 3-day pulmonary metastases from nonimmunogenic sarcomas, with concurrent elimination of LAK cell activity in the lungs. In mice with 3-day pulmonary metastases from weakly immunogenic sarcomas, both Lyt-2+ cells and ASGM-1+ cells were involved in IL 2-mediated tumor regression, but Lyt-2+ cells appeared to be the more potent mediator in the response. Lyt-2+ cells were also involved in the elimination of grossly visible 10-day macrometastases from these weakly immunogenic tumors. Depletion of L3T4+ cells had no effect on tumor regression. Thus, although LAK effectors derived from ASGM-1+ precursors can eliminate pulmonary micrometastases regardless of tumor immunogenicity, Lyt-2+ cells are predominant effectors in the elimination of both pulmonary micro- and macrometastases from weakly immunogenic sarcomas.  相似文献   

14.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The syngeneic mixed lymphocyte reaction (SMLR) was assayed in the medium containing syngeneic normal mouse serum (NMS), by using nylon-adherent stimulator cells and nonadherent responder T cells, which were prepared from murine spleens in the absence of fetal calf serum (FCS) to avoid any sensitization to xenogeneic protein antigens. The responder cells in this SMLR, without definite background proliferation, generated specific proliferative response to the syngeneic stimulator cells in a dose-related fashion. The SMLR was accompanied by production of interleukin 3 (IL 3) but not interleukin 2 (IL 2) or interferon (IFN). No cytotoxicity against the syngeneic or allogeneic target cells was induced. Correlating with no production of IL 2 or IFN, no natural killer (NK) activity was detected. The proliferation was not inhibited by addition of specific antiserum for IFN-gamma. In contrast, proliferation in the responder cells when incubated with allogeneic stimulator cells was inhibited by anti-IFN-gamma serum and accompanied by production of IL 2 and IFN as well as IL 3, and by augmentation of NK activity and generation of cytotoxic T cells. Cell surface analysis revealed that the cells producing IL 3 in this SMLR system were Thy-1+ Lyt-1+2- helper T cells. Cells responding to the SMLR culture fluids with DNA replication were Thy-1-Lyt-1-2- asialo GM1- no-marker cells, which were the same as a population responsible for partially purified IL 3. On the other hand, when the responder cells were exposed to FCS before culture and assayed for SMLR in the FCS-free NMS medium, variable levels of IL 2 production were induced in response to the stimulator cells. The responder cells generated a high background DNA replication in the absence of syngeneic stimulators, suggesting that this IL 2 production may result from the stimulation of T cells by FCS as a foreign antigen. Overall, these results suggest that the SMLR may be a cellular interaction, in which non-T cells stimulate Lyt-1+2- helper T cells to produce IL 3 but not IL 2 or IFN. This IL 3 can, in turn, induce proliferation of IL 3 responding cells, which appear to be early precursors in lymphocyte differentiation, but no proliferative response or activation of IL 2- and IFN-dependent mature T cells or NK cells.  相似文献   

16.
The development of natural killer (NK) cells from bone marrow (BM) precursors was studied. Recombinant interleukin 2 (IL 2) was able to induce the in vitro development of NK cells when added to cultures of mouse BM cells. Treatment of donor mice with 5-fluorouracil (150 mg/kg i.v.), which eliminates more differentiated cells but spares less differentiated cells, appears to augment NK cell development. The "NK stem cell" was found to be asialo GM1-, Thy-1+, Lyt-2-, and Lyt-1-. The cells generated in vitro had a typical phenotype of NK cells, being asialo GM1+, Lyt-5+, Thy-1+, Lyt-2-, and Lyt-1-. These effector cells also had specificity characteristics of NK cells lysing the NK-susceptible YAC-1 and K562 targets, but not the NK-resistant EL/4 or allogeneic and syngeneic blasts. Hemopoietin-1 (H-1), a factor which acts on very primitive multipotent BM cells, was able to cooperate with IL 2, increasing the development of NK cells. In contrast, other factors such as interleukin 3 or colony-stimulating factor did not cause induction of NK activity when added to cultures of BM cells, indicating that this effect, i.e., induction of NK cell development, is peculiar to IL 2. These results indicate that IL 2 can act as a differentiation as well as growth factor for NK cells, and that H-1 can promote the development of functional activity in a lymphocyte subpopulation as well as affect the differentiation of myelomonocytic and other cell lineages. This experimental system appears quite useful for characterization of BM precursors for NK cells, and should help to better understand the relationship of the NK cell lineage to the T cell or other lineages.  相似文献   

17.
Lymphokine-activated killer cells (LAK) were originally distinguished from natural killers (NK) and cytotoxic T lymphocytes. Recently, however, IL 2-activated NK cells were suggested as the major source of LAK reactivity in human peripheral blood (PBL). Because certain T cell acute lymphoblastic leukemia (T-ALL) cells are phenotypically similar to LAK precursors, we have asked whether these leukemic cells can be induced toward LAK-cytotoxicity and express NK reactivity before stimulation. Five out of seven T-ALL preparations were induced by IL 2 to kill target cells. The cytotoxicity of the leukemic-LAK cells resembled that of normal LAK effectors as they lysed efficiently the NK-resistant target Daudi, as well as fresh human sarcoma, carcinoma, and renal cancer cells but not normal PBL. The ALL-LAK precursors phenotype was T3-, T4-, T8-, and T11+, similar to most normal LAK precursors. In contrast to normal PBL that generated LAK effectors when their proliferation was inhibited, the irradiated, nonproliferating T-ALL leukemic cells did not respond to IL 2. Therefore, the T-ALL LAK cytotoxicity was attributed to the leukemic cells rather than to residual normal lymphocytes. The IL 2-responding T-ALL cells did not express autonomous NK type cytotoxicity, suggesting that they reflect LAK precursors of non-NK origin. The homogeneous leukemic preparations with inducible LAK cytotoxicity described herein provide a model system for studying normal LAK cells.  相似文献   

18.
Expression and functional significance of the J11d marker on mouse thymocytes   总被引:30,自引:0,他引:30  
Subpopulations of thymocytes have been characterized phenotypically and functionally in relation to their expression of the marker defined by the monoclonal antibody J11d. Cortical-type L3T4+, Lyt-2+ thymocytes are all J11d+. Thymocytes that share the phenotype L3T4-, Lyt-2+ with peripheral Lyt-2+ T cells contain a J11d+ and a J11d- subset. These J11d- cells behave like peripheral Lyt-2+ T cells in two functional assays: they form clonal growth bursts in response to immobilized antibody against the T cell antigen receptor, and they act as precursors of alloreactive cytotoxic T cells. The J11d+ cells are inert in both of these assays. In contrast, L3T4+, Lyt-2- thymocytes do not contain a J11d+ subset.  相似文献   

19.
We have established a bone marrow culture system in which mature natural killer (NK) cells can be generated from inactive precursors by interleukin 2. Recombinant interleukin 3 (IL 3) almost completely blocked the induction of NK cells in this culture system as judged by cytotoxic activity, as well as appearance of cells with NK phenotype. The dose-response curve for inhibition of the generation of NK activity with IL 3 parallelled the growth promoting activity on the strictly IL 3-dependent cell line L/B. The effect of IL 3 was selective for the precursor stage of the NK cell, because mature NK cells were not affected by culture with IL 3 for the same period of time. Moreover, the effect of IL 3 was confined to the first 24 hr of culture, indicating an effect on an early stage of NK cell differentiation. IL 3 did not increase the small normally occurring NK-sensitive population in bone marrow, and did not affect the activity of a variant cytotoxic cell with specificity for adherent target cells, the natural cytotoxic cell. Concomitantly with downregulation of NK cell generation, IL 3 induced strong proliferation in the bone marrow cultures and an increase in the percentage of cells expressing the T cell marker Thy-1. A model for regulation of NK cells based on competition of growth factors for target cells with a common progenitor is discussed.  相似文献   

20.
The successful adoptive immunotherapy of the syngeneic Friend virus-induced murine leukemia FBL-3 was mediated by a proliferative MHC-restricted, tumor-specific CTL clone in combination with recombinant human IL 2. This clone was previously shown to express the L3T4-, Lyt-1+, Lyt-2+ surface phenotype. Activation of the clone for 48 hr in vitro with irradiated tumor cells induced the expression of IL 2 receptors and markedly increased clonal proliferation in response to recombinant IL 2. Intravenous injection of 2 X 10(7) 48 hr in vitro-activated cloned cells, followed by 6 days of systemic (i.p.) administration of IL 2 resulted in the complete regression of tumors and the cure of 50% of the treated mice. IL 2 alone had no effect on tumor growth, whereas the injection of nonactivated (resting) clone plus IL 2 or activated clone without IL 2 had small but insignificant effects on tumor growth and survival. These results indicated that the in vivo effector functions of cloned T cells may be markedly enhanced by the concurrent systemic administration of recombinant IL 2 and by the induction of optimal IL 2 receptor expression on the cloned T cells at the time of cell administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号