首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1   总被引:1,自引:0,他引:1  
Sphingomonas sp. A1 alginate lyase A1-II′, a member of polysaccharide lyase family 7, shows a broad substrate specificity acting on poly α-L-guluronate (poly(G)), poly β-D-mannuronate (poly(M)) and the heteropolymer (poly(MG)) in alginate molecules. A1-II′ with a glove-like β-sandwich as a basic scaffold forms a cleft covered with two lid loops (L1 and L2). Here, we demonstrate the loop flexibility for substrate binding and structural determinants for broad substrate recognition and catalytic reaction. The two loops associate mutually over the cleft through the formation of a hydrogen bond between their edges (Asn141 and Asn199). A double mutant, A1-II′ N141C/N199C, has a disulfide bond between Cys141 and Cys199, and shows little enzyme activity. Adding dithiothreitol to the enzyme reaction mixture leads to a tenfold increase in its molecular activity, suggesting the significance of flexibility in lid loops for accommodating the substrate into the active cleft. In alginate trisaccharide (GGG or MMG)-bound A1-II′ Y284F, the enzyme interacts appropriately with substrate hydroxyl groups at subsites + 1 and + 2 and accommodates G or M, while substrate carboxyl groups are strictly recognized by specific residues. This mechanism for substrate recognition enables A1-II′ to show the broad substrate specificity. The structure of A1-II′ H191N/Y284F complexed with a tetrasaccharide bound at subsites − 1 to + 3 suggests that Gln189 functions as a neutralizer for the substrate carboxyl group, His191 as a general base, and Tyr284 as a general acid. This is, to our knowledge, the first report on the structure and function relationship in family 7.  相似文献   

2.
Sphingomonas sp. strain A1 has three endotype alginate lyases (A1-I, A1-II [family PL-7], and A1-III [family PL-5]), each of which is encoded by a single gene. In addition to those of these lyases, a gene (the A1-II' gene) showing significant identity with the A1-II gene was present in the bacterial genome and coded for an alginate lyase with broad substrate specificity. Since no expression of A1-II' was observed even in bacterial cells grown on alginate, the A1-II' gene was thought to be a silent gene derived from the A1-II gene, presumably through duplication, modification, and translocation.  相似文献   

3.
Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8 (PL-8), acts exolytically on the side-chains of pentasaccharide-repeating polysaccharide xanthan and cleaves the glycosidic bond between glucuronic acid (GlcUA) and pyruvylated mannose (PyrMan) through a beta-elimination reaction. To clarify the enzyme reaction mechanism, i.e. its substrate recognition and catalytic reaction, we determined crystal structures of a mutant enzyme, N194A, in complexes with the product (PyrMan) and a substrate (pentasacharide) and in a ligand-free form at 1.8, 2.1, and 2.3A resolution. Based on the structures of the mutant in complexes with the product and substrate, we found that xanthan lyase recognized the PyrMan residue at subsite -1 and the GlcUA residue at +1 on the xanthan side-chain and underwent little interaction with the main chain of the polysaccharide. The structure of the mutant-substrate complex also showed that the hydroxyl group of Tyr255 was close to both the C-5 atom of the GlcUA residue and the oxygen atom of the glycosidic bond to be cleaved, suggesting that Tyr255 likely acts as a general base that extracts the proton from C-5 of the GlcUA residue and as a general acid that donates the proton to the glycosidic bond. A structural comparison of catalytic centers of PL-8 lyases indicated that the catalytic reaction mechanism is shared by all members of the family PL-8, while the substrate recognition mechanism differs.  相似文献   

4.
The crystal structure of endo-β-(1→4)-glucuronan lyase from Trichoderma reesei (TrGL) has been determined at 1.8 Å resolution as the first three-dimensional structure of polysaccharide lyase (PL) family 20. TrGL has a typical β-jelly roll fold, which is similar to glycoside hydrolase family 16 and PL7 enzymes. A calcium ion is bound to the site far from the cleft and appears to contribute to the stability. There are several completely conserved residues in the cleft. Possible catalytic residues are predicted based on structural comparison with PL7 alginate lyase A1-II′.  相似文献   

5.
Structural and functional analyses of alginate lyases are important in the clarification of the biofilm-dependent ecosystem in Pseudomonas aeruginosa and in the development of therapeutic agents for bacterial disease. Most alginate lyases are classified into polysaccharide lyase (PL) family-5 and -7 based on their primary structures. Family PL-7 enzymes are still poorly characterized especially in structural properties. Among family PL-7, a gene coding for a hypothetical protein (PA1167) homologous to Sphingomonas alginate lyase A1-II was found to be present in the P. aeruginosa genome. PA1167 overexpressed in Escherichia coli cleaved glycosidic bonds in alginate and released unsaturated saccharides, indicating that PA1167 is an alginate lyase catalyzing a beta-elimination reaction. The enzyme acted preferably on heteropolymeric regions endolytically and worked most efficiently at pH 8.5 and 40 degrees C. The specific activity of PA1167, however, was much weaker than that of the known alginate lyase AlgL, suggesting that AlgL plays a main role in alginate depolymerization in P. aeruginosa. In addition to this specific activity, differences were found between PA1167 and AlgL in enzyme properties such as molecular mass, optimum pH, salt effect, and substrate specificity. The first crystal structure of the family PL-7 alginate lyase was determined at 2.0 A resolution. PA1167 was found to form a glove-like beta-sandwich composed of 15 beta-strands and 3 alpha-helices. The structural difference between the beta-sandwich PA1167 of family PL-7 and alpha/alpha-barrel AlgL of family PL-5 may be responsible for the enzyme characteristics. Crystal structures of polysaccharide lyases determined so far indicate that they can be assigned to three folding groups having parallel beta-helix, alpha/alpha-barrel, and alpha/alpha-barrel + antiparallel beta-sheet structures as basic frames. PA1167 is the fourth novel folding structure found among polysaccharide lyases.  相似文献   

6.
The crystal structure of alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. (ALY-1) was determined at 1.2A resolution using the MAD method and bromide ions. The structure of ALY-1 is abundant in beta-strands and has a deep cleft, similar to the jellyroll beta-sandwich found in 1,3-1,4-beta-glucanase. The structure suggests that alginate molecules may penetrate into the cleft to interact with the catalytic site of ALY-1. The reported crystal structure of another type of alginate lyase, A1-III, differs from that of ALY-1 in that it consists almost entirely of alpha-helical structure. Nevertheless, the putative catalytic residues in both enzymes are positioned in space in nearly identical arrangements. This finding suggests that both alginate lyases may have evolved through convergent evolution.  相似文献   

7.
The Chlorella virus enzyme vAL-1 (38 kDa), a member of polysaccharide lyase family 14, degrades the Chlorella cell wall by cleaving the glycoside bond of the glucuronate residue (GlcA) through a β-elimination reaction. The enzyme consists of an N-terminal cell wall-attaching domain (11 kDa) and a C-terminal catalytic module (27 kDa). Here, we show the enzyme characteristics of vAL-1, especially its pH-dependent modes of action, and determine the structure of the catalytic module. vAL-1 also exhibited alginate lyase activity at alkaline pH, and truncation of the N-terminal domain increased the lyase activity by 50-fold at pH 7.0. The truncated form vAL-1(S) released di- to hexasaccharides from alginate at pH 7.0, whereas disaccharides were preferentially generated at pH 10.0. This indicates that vAL-1(S) shows two pH-dependent modes of action: endo- and exotypes. The x-ray crystal structure of vAL-1(S) at 1.2 Å resolution showed two antiparallel β-sheets with a deep cleft showing a β-jelly roll fold. The structure of GlcA-bound vAL-1(S) at pH 7.0 and 10.0 was determined: GlcA was found to be bound outside and inside the cleft at pH 7.0 and 10.0, respectively. This suggests that the electric charges at the active site greatly influence the binding mode of substrates and regulate endo/exo activity. Site-directed mutagenesis demonstrated that vAL-1(S) has a specific amino acid arrangement distinct from other alginate lyases crucial for catalysis. This is, to our knowledge, the first study in which the structure of a family 14 polysaccharide lyase with two different modes of action has been determined.  相似文献   

8.
褐藻寡糖有着丰富的生物学功能,酶法制备功能性褐藻寡糖具有重要实践应用价值.为发掘高活性及稳定性的褐藻寡糖制备酶,对浅海热液嗜热菌Yeosuana marina sp.JLT21中的海藻酸裂解酶YMA-1的基因在大肠杆菌中进行表达、纯化及酶活鉴定.结果发现YMA-1由306个氨基酸残基构成,是多糖裂解酶家族7(PL7)新...  相似文献   

9.
The crystallographic structure of the family 3 polysaccharide lyase (PL-3) PelI from Erwinia chrysanthemi has been solved to 1.45 A resolution. It consists of an N-terminal domain harboring a fibronectin type III fold linked to a catalytic domain displaying a parallel beta-helix topology. The N-terminal domain is located away from the active site and is not involved in the catalytic process. After secretion in planta, the two domains are separated by E. chrysanthemi proteases. This event turns on the hypersensitive response of the host. The structure of the single catalytic domain determined to 2.1 A resolution shows that the domain separation unveils a "Velcro"-like motif of asparagines, which might be recognized by a plant receptor. The structure of PelI in complex with its substrate, a tetragalacturonate, has been solved to 2.3 A resolution. The sugar binds from subsites -2 to +2 in one monomer of the asymmetric unit, although it lies on subsites -1 to +3 in the other. These two "Michaelis complexes" have never been observed simultaneously before and are consistent with the dual mode of bond cleavage in this substrate. The bound sugar adopts a mixed 2(1) and 3(1) helical conformation similar to that reported in inactive mutants from families PL-1 and PL-10. However, our study suggests that the catalytic base in PelI is not a conventional arginine but a lysine as proposed in family PL-9.  相似文献   

10.
In order to investigate the catalytic properties of alginate lyase from Pseudomonas aeruginosa CF1/M1, a clinical isolate, regarding the capability to perform β-elimination on oligomannuronates of defined length (2–9), the alginate lyase was purified from periplasmic extracts. A purification method for unsaturated and saturated oligomannuronates applying anionic exchange chromatography on a FPLC apparatus was established. The alginate lyase showed the highest activity, when hexamers were provided as substrate. This indicated that the alginate lyase best accommodates a chain of six alginate residues in the active center. As a minimum chain length, the pentameric oligomannuronate was still accepted as substrate. Mannuronate oligomers shorter than the pentamer were not accepted as substrate for alginate lyase. Furthermore, oligomer pattern analysis of polymannuronate which was subjected to β-elimination by alginate lyase revealed that the trimer is the most abundant oligomer. These data indicated that β-elimination and cleavage occurred at mannuronic acid residue no. 3 of the accommodated hexameric alginate chain.  相似文献   

11.
The three-dimensional structure of alginate lyase A1-III (ALYIII) from a Sphingomonas species A1 was determined by X-ray crystallography. The enzyme was crystallized by the hanging-drop vapour-diffusion method in the presence of 49% ammonium sulfate at 20 degrees C. The crystals are monoclinic and belong to the space group C2 with unit cell dimensions of a=49.18 A, b=93.08 A, c=82.10 A and beta=104.12 degrees. There was one molecule of alginate lyase in the asymmetric unit of the crystal. The diffraction data up to 1. 71 A were collected with Rsymof 5.0%. The crystal structure of ALYIII was solved by the multiple isomorphous replacement method and refined at 1.78 A resolution using X-PLOR with a final R -factor of 18.0% for 10.0 to 1.78 A resolution data. The refined model of ALYIII contained 351 amino acid residues, 299 water molecules and two sulfate ions. The three-dimensional structure of ALYIII was abundant in helices and had a deep tunnel-like cleft in a novel (alpha6/alpha5)-barrel structure, which was similar to the (alpha6/alpha6)-barrel found in glucoamylase and cellulase. This structure presented the possibility that alginate molecules might penetrate into the cleft to interact with the catalytic site of ALYIII.  相似文献   

12.
A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40?°C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate.  相似文献   

13.
Alginate lyases have a wide range of industrial applications, such as oligosaccharide preparation, medical treatment, and bioconversion. Therefore, the discovery and characterization of novel alginate lyases are extremely important. PL-6 alginate lyases are classified into two groups: those with a single domain or two domains. However, only one structure of a two-domain alginate lyase has been determined to date. In this study, we characterized a novel single-domain PL-6 alginate lyase (named AlyF). According to the biochemical analysis, AlyF possesses unique features compared with other PL-6 enzymes, including (1) a Ca2+-independent catalytic mechanism and (2) a PolyG-specific cleavage specificity that predominantly produces trisaccharides. The structures of AlyF and its complexes described here reveal the structural basis for these unique features and substrate binding mechanisms, which were further confirmed using mutagenesis. More importantly, we determined the possible subsites specifying the predominantly trisaccharide products of AlyF, which may facilitate the rational design of AlyF for potential applications in preparing a single alginate oligomer.  相似文献   

14.
Alginate lyases play important roles in alginate degradation in the ocean. Although a large number of alginate lyases have been characterized, little is yet known about those in extremely cold polar environments, which may have unique mechanisms for environmental adaptation and for alginate degradation. Here, we report the characterization of a novel PL7 alginate lyase AlyC3 from Psychromonas sp. C-3 isolated from the Arctic brown alga Laminaria, including its phylogenetic classification, catalytic properties, and structure. We propose the establishment of a new PM-specific subfamily of PL7 (subfamily 6) represented by AlyC3 based on phylogenetic analysis and enzymatic properties. Structural and biochemical analyses showed that AlyC3 is a dimer, representing the first dimeric endo-alginate lyase structure. AlyC3 is activated by NaCl and adopts a novel salt-activated mechanism; that is, salinity adjusts the enzymatic activity by affecting its aggregation states. We further solved the structure of an inactive mutant H127A/Y244A in complex with a dimannuronate molecule and proposed the catalytic process of AlyC3 based on structural and biochemical analyses. We show that Arg82 and Tyr190 at the two ends of the catalytic canyon help the positioning of the repeated units of the substrate and that His127, Tyr244, Arg78, and Gln125 mediate the catalytic reaction. Our study uncovers, for the first time, the amino acid residues for alginate positioning in an alginate lyase and demonstrates that such residues involved in alginate positioning are conserved in other alginate lyases. This study provides a better understanding of the mechanisms of alginate degradation by alginate lyases.  相似文献   

15.
Chondroitin Sulfate ABC lyase I from Proteus vulgaris is an endolytic, broad-specificity glycosaminoglycan lyase, which degrades chondroitin, chondroitin-4-sulfate, dermatan sulfate, chondroitin-6-sulfate, and hyaluronan by beta-elimination of 1,4-hexosaminidic bond to unsaturated disaccharides and tetrasaccharides. Its structure revealed three domains. The N-terminal domain has a fold similar to that of carbohydrate-binding domains of xylanases and some lectins, the middle and C-terminal domains are similar to the structures of the two-domain chondroitin lyase AC and bacterial hyaluronidases. Although the middle domain shows a very low level of sequence identity with the catalytic domains of chondroitinase AC and hyaluronidase, the residues implicated in catalysis of the latter enzymes are present in chondroitinase ABC I. The substrate-binding site in chondroitinase ABC I is in a wide-open cleft, consistent with the endolytic action pattern of this enzyme. The tryptophan residues crucial for substrate binding in chondroitinase AC and hyaluronidases are lacking in chondroitinase ABC I. The structure of chondroitinase ABC I provides a framework for probing specific functions of active-site residues for understanding the remarkably broad specificity of this enzyme and perhaps engineering a desired specificity. The electron density map showed clearly that the deposited DNA sequence for residues 495-530 of chondroitin ABC lyase I, the segment containing two putative active-site residues, contains a frame-shift error resulting in an incorrectly translated amino acid sequence.  相似文献   

16.
目的:双功能褐藻胶裂解酶既能降解聚β-D-甘露糖醛酸,又能降解聚α-L-古罗糖醛酸,可以用一种酶来制备不同结构的褐藻胶寡糖。本文的目的是筛选能产生双功能褐藻胶裂解酶的菌株,对其产酶曲线和降解产物作初步研究。方法:利用唯一碳源培养基筛选产生褐藻胶裂解酶的菌株,通过16SrDNA序列比对进行菌种鉴定,通过在凝胶上检测褐藻胶裂解酶活性来判断发酵上清液中褐藻胶裂解酶的数量及分子量,利用薄层层析确定降解褐藻胶的终产物组成。结果:从褐藻上筛选到一株海洋细菌QY107,鉴定为弧菌属细菌。发酵120h时褐藻胶裂解酶产量为12.32U/mL,其发酵液上清中只含有一种褐藻胶裂解酶,分子量在28kDa左右,并且对聚β—D-甘露糖醛酸和聚α-L-古罗糖醛酸都能降解,降解褐藻胶的终产物主要为三糖。结论:本文筛选到一株弧菌QY107,其发酵液上清中只有一种双功能褐藻胶裂解酶,可用于大量制备褐藻胶三糖。推测该酶具有特殊的催化腔结构,对其结构与功能相互关系的研究可能会发现新的底物结合与催化机制。酶解制备褐藻胶寡糖因其环保高效而越来越受到人们的重视,因此该菌株能促进海洋寡糖类生物制品的开发,在医药、食品、农业、生物燃料等领域具有广阔的应用前景。  相似文献   

17.
Rahman MM  Inoue A  Tanaka H  Ojima T 《Biochimie》2011,93(10):1720-1730
Herbivorous marine gastropods such as abalone and sea hare ingest brown algae as a major diet and degrade the dietary alginate with alginate lyase (EC 4.2.2.3) in their digestive fluid. To date alginate lyases from Haliotidae species such as abalone have been well characterized and the primary structure analyses have classified abalone enzymes into polysaccharide-lyase-family 14 (PL-14). However, other gastropod enzymes have not been so well investigated and only partial amino-acid sequences are currently available. To improve the knowledge for primary structure and catalytic residues of gastropod alginate lyases, we cloned the cDNA encoding an alginate lyase, AkAly30, from an Aplysiidae species Aplysia kurodai and assessed its catalytically important residues by site-directed mutagenesis. Alginate lyase cDNA fragments were amplified by PCR followed by 5′- and 3′-RACE from A. kurodai hepatopancreas cDNA. The finally cloned cDNA comprised 1313 bp which encoded an amino-acid sequence of 295 residues of AkAly30. The deduced sequence comprised an initiation methionine, a putative signal peptide for secretion (18 residues), a propeptide-like region (9 residues), and a mature AkAly30 domain (267 residues) which showed ∼40% amino-acid identity with abalone alginate lyases. An Escherichia coli BL21(DE3)-pCold I expression system for recombinant AkAly30 (recAkAly30) was constructed and site-directed mutagenesis was performed to assess catalytically important amino-acid residues which had been suggested in abalone and Chlorella virus PL-14 enzymes. Replacements of K99, S126, R128, Y140 and Y142 of recAkAly30 by Ala and/or Phe greatly decreased its activity as in the case of abalone and/or Chlorella virus enzymes. Whereas, H213 that was essential for Chlorella virus enzyme to exhibit the activity at pH 10.0 was originally replaced by N120 in AkAly30. The reverse replacement of N120 by His in recAkAly30 increased the activity at pH 10.0 from 8 U/mg to 93 U/mg; however, the activity level at pH 7.0, i.e., 774.8 U/mg, was still much higher than that at pH 10.0. This indicates that N120 is not directly related to the pH dependence of AkAly30 unlike H213 of vAL-1.  相似文献   

18.
《Journal of molecular biology》2019,431(24):4897-4909
Alginate lyases, which are important in both basic and applied sciences, fall into ten polysaccharide lyase (PL) families. PL36 is a newly established family that includes 39 bacterial sequences and one eukaryotic sequence. Till now, the structures or catalytic mechanisms of PL36 alginate lyases have yet to be revealed. Here, we characterized a novel PL36 alginate lyase, Aly36B, from Chitinophaga sp. MD30. Aly36B is a polymannuronate specific endolytic alginate lyase. To probe the catalytic mechanism of Aly36B, the structures of wild-type Aly36B and its mutants (K143A/Y185A in complex with alginate tetrasaccharide and K143A/M171A with trisaccharide) were solved. The overall structure of Aly36B belongs to the β-jelly roll scaffold, adopting a typical β-sandwich fold. Aly36B contains a Ca2+, which is far away from the active center and plays an important role in stabilizing the structure of Aly36B. Based on structural and mutational analyses, the catalytic mechanism of Aly36B for alginate degradation was explained. During catalysis, Arg169, Tyr185, and Tyr187 are responsible for neutralizing the negative charge of the substrate, and Lys143 acts as both the catalytic base and the catalytic acid, which represents a new kind of catalytic mechanism of alginate lyases. Sequence alignment shows that these four residues involved in catalysis are highly conserved in all PL36 sequences, suggesting that PL36 alginate lyases may adopt a similar catalytic mechanism. Taken together, this study reveals the molecular structure and catalytic mechanism of a PL36 alginate lyase, broadening our knowledge on alginate lyases and facilitating future biotechnological applications of PL36 alginate lyases.  相似文献   

19.
Alginate is a family of linear copolymers of (1-->4)-linked beta-d-mannuronic acid and its C-5 epimer alpha-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-A resolution. AlgE4A folds into a right-handed parallel beta-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The beta-helix is composed of four parallel beta-sheets, comprising 12 complete turns, and has an amphipathic alpha-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction.  相似文献   

20.
Glycosaminoglycans (GAGs) are a family of acidic heteropolysaccharides, including such molecules as chondroitin sulfate, dermatan sulfate, heparin and keratan sulfate. Cleavage of the O-glycosidic bond within GAGs can be accomplished by hydrolases as well as lyases, yielding disaccharide and oligosaccharide products. We have determined the crystal structure of chondroitinase B, a glycosaminoglycan lyase from Flavobacterium heparinum, as well as its complex with a dermatan sulfate disaccharide product, both at 1.7 A resolution. Chondroitinase B adopts the right-handed parallel beta-helix fold, found originally in pectate lyase and subsequently in several polysaccharide lyases and hydrolases. Sequence homology between chondroitinase B and a mannuronate lyase from Pseudomonas sp. suggests this protein also adopts the beta-helix fold. Binding of the disaccharide product occurs within a positively charged cleft formed by loops extending from the surface of the beta-helix. Amino acid residues responsible for recognition of the disaccharide, as well as potential catalytic residues, have been identified. Two arginine residues, Arg318 and Arg364, are found to interact with the sulfate group attached to O-4 of N-acetylgalactosamine. Cleavage of dermatan sulfate likely occurs at the reducing end of the disaccharide, with Glu333 possibly acting as the general base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号