首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.  相似文献   

2.
Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 and anc-1 lines, which have phenotypes similar to unc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.  相似文献   

3.
The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf) mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor) mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage - possibly by promoting the reorganization of damaged chromatin.  相似文献   

4.
Invertebrates and in Drosophila, lamins and lamin-associated proteins are primary targets for cleavage by caspases. Eliminating mammalian lamins causes apoptosis, whereas expressing mutant lamins that cannot be cleaved by caspase-6 delay apoptosis. Caenorhabditis elegans has a single lamin protein, Ce-lamin, and a caspase, CED-3, that is responsible for most if not all somatic apoptosis. In this study we show that in C. elegans embryos induced to undergo apoptosis Ce-lamin is degraded surprisingly late. In such embryos CED-4 translocated to the nuclear envelope but the cytological localization of Ce-lamin remained similar to that in wild-type embryos. TUNEL labeling indicated that Ce-lamin was degraded only after DNA is fragmented. Ce-lamin, Ce-emerin, or Ce-MAN1 were not cleaved by recombinant CED-3, showing that these lamina proteins are not substrates for CED-3 cleavage. These results suggest that lamin cleavage probably is not essential for apoptosis in C. elegans.  相似文献   

5.
The GTPase Ran is known to regulate transport of proteins across the nuclear envelope. Recently, Ran has been shown to promote microtubule polymerization and spindle assembly around chromatin in Xenopus mitotic extracts and to stimulate nuclear envelope assembly in Xenopus or HeLa cell extracts. However, these in vitro findings have not been tested in living cells and do not necessarily describe the generalized model of Ran functions. Here we present several lines of evidence that Ran is indispensable for correct chromosome positioning and nuclear envelope assembly in C. elegans. Embryos deprived of Ran by RNAi showed metaphase chromosome misalignment and aberrant chromosome segregation, while astral microtubules seemed unaffected. Depletion of RCC1 or RanGAP by RNAi resulted in essentially the same defects. The immunofluorescent staining showed that Ran localizes to kinetochore regions of metaphase and anaphase chromosomes, suggesting the role of Ran in linking chromosomes to kinetochore microtubules. Ran was shown to localize to the nuclear envelope at telophase and during interphase in early embryos, and the depletion of Ran resulted in failure of nuclear envelope assembly. Thus, Ran is crucially involved in chromosome positioning and nuclear envelope assembly in C. elegans.  相似文献   

6.
Stepwise reassembly of the nuclear envelope at the end of mitosis   总被引:23,自引:8,他引:15       下载免费PDF全文
The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane- derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.  相似文献   

7.
Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2-null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2-null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2-null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.  相似文献   

8.
Barrier-to-autointegration factor (BAF) is an essential, highly conserved, metazoan protein. BAF interacts with LEM (LAP2, emerin, MAN1) domain-carrying proteins of the inner nuclear membrane. We analyzed the in vivo function of BAF in Caenorhabditis elegans embryos using both RNA interference and a temperature-sensitive baf-1 gene mutation and found that BAF is directly involved in nuclear envelope (NE) formation. NE defects were observed independent of and before the chromatin organization phenotype previously reported in BAF-depleted worms and flies. We identified vaccinia-related kinase (VRK) as a regulator of BAF phosphorylation and localization. VRK localizes both to the NE and chromatin in a cell-cycle-dependent manner. Depletion of VRK results in several mitotic defects, including impaired NE formation and BAF delocalization. We propose that phosphorylation of BAF by VRK plays an essential regulatory role in the association of BAF with chromatin and nuclear membrane proteins during NE formation.  相似文献   

9.
The integrity of the nuclear envelope barrier relies on membrane remodeling by the ESCRTs, which seal nuclear envelope holes and contribute to the quality control of nuclear pore complexes (NPCs); whether these processes are mechanistically related remains poorly defined. Here, we show that the ESCRT‐II/III chimera, Chm7, is recruited to a nuclear envelope subdomain that expands upon inhibition of NPC assembly and is required for the formation of the storage of improperly assembled NPCs (SINC) compartment. Recruitment to sites of NPC assembly is mediated by its ESCRT‐II domain and the LAP2‐emerin‐MAN1 (LEM) family of integral inner nuclear membrane proteins, Heh1 and Heh2. We establish direct binding between Heh2 and the “open” forms of both Chm7 and the ESCRT‐III, Snf7, and between Chm7 and Snf7. Interestingly, Chm7 is required for the viability of yeast strains where double membrane seals have been observed over defective NPCs; deletion of CHM7 in these strains leads to a loss of nuclear compartmentalization suggesting that the sealing of defective NPCs and nuclear envelope ruptures could proceed through similar mechanisms.  相似文献   

10.
The "MAN antigens" are polypeptides recognized by autoantibodies from a patient with a collagen vascular disease and localized to the nuclear envelope. We now show that one of the human MAN antigens termed MAN1 is a 82.3-kDa protein with an amino-terminal domain followed by two hydrophobic segments and a carboxyl-terminal tail. The MAN1 gene contains seven protein-coding exons and is assigned to human chromosome 12q14. Its mRNA is approximately 5.5 kilobases and is detected in several different cell types that were examined. Cell extraction experiments show that MAN1 is an integral membrane protein. When expressed in transfected cells, MAN1 is exclusively targeted to the nuclear envelope, consistent with an inner nuclear membrane localization. Protein sequence analysis reveals that MAN1 shares a conserved globular domain of approximately 40 amino acids, which we term the LEM module, with inner nuclear membrane proteins lamina-associated polypeptide 2 and emerin. The LEM module is also present in two proteins of Caenorhabditis elegans. These results show that MAN1 is an integral protein of the inner nuclear membrane that shares the LEM module with other proteins of this subcellular localization.  相似文献   

11.
Nuclear pore complexes (NPCs) are multisubunit protein entities embedded into the nuclear envelope (NE). Here, we examine the in vivo dynamics of the essential Drosophila nucleoporin Nup107 and several other NE-associated proteins during NE and NPCs disassembly and reassembly that take place within each mitosis. During both the rapid mitosis of syncytial embryos and the more conventional mitosis of larval neuroblasts, Nup107 is gradually released from the NE, but it remains partially confined to the nuclear (spindle) region up to late prometaphase, in contrast to nucleoporins detected by wheat germ agglutinin and lamins. We provide evidence that in all Drosophila cells, a structure derived from the NE persists throughout metaphase and early anaphase. Finally, we examined the dynamics of the spindle checkpoint proteins Mad2 and Mad1. During mitotic exit, Mad2 and Mad1 are actively imported back from the cytoplasm into the nucleus after the NE and NPCs have reformed, but they reassociate with the NE only later in G1, concomitantly with the recruitment of the basket nucleoporin Mtor (the Drosophila orthologue of vertebrate Tpr). Surprisingly, Drosophila Nup107 shows no evidence of localization to kinetochores, despite the demonstrated importance of this association in mammalian cells.  相似文献   

12.
Mitosis in metazoa requires nuclear envelope (NE) disassembly and reassembly. NE disassembly is driven by multiple phosphorylation events. Mitotic phosphorylation of the protein BAF reduces its affinity for chromatin and the LEM family of inner nuclear membrane proteins; loss of this BAF-mediated chromatin-NE link contributes to NE disassembly. BAF must reassociate with chromatin and LEM proteins at mitotic exit to reform the NE; however, how its dephosphorylation is regulated is unknown. Here, we show that the C. elegans protein LEM-4L and its human ortholog Lem4 (also called ANKLE2) are both required for BAF dephosphorylation. They act in part by inhibiting BAF's mitotic kinase, VRK-1, in vivo and in vitro. In addition, Lem4/LEM-4L interacts with PP2A and is required for it to dephosphorylate BAF during mitotic exit. By coordinating VRK-1- and PP2A-mediated signaling on BAF, Lem4/LEM-4L controls postmitotic NE formation in a function conserved from worms to humans.  相似文献   

13.
14.
H F Lin  M F Wolfner 《Cell》1991,64(1):49-62
The maternal-effect gene fs(1)Ya is specifically required for embryonic mitosis in Drosophila. fs(1)Ya is involved in the initiation of the first embryonic mitosis and may also be necessary for subsequent embryonic mitotic divisions. fs(1)Ya encodes a 91.3 kd hydrophilic protein containing two putative MPF phosphorylation target sites and two potential nuclear localization signals. This protein is synthesized during postoogenic maturation from its maternal RNA and persists throughout embryogenesis. In early embryos, the fs(1)Ya protein is localized to the nuclear envelope from interphase to metaphase. During anaphase and telophase, it is dispersed in the nucleoplasm and cytoplasm, a behavior that is different from that of both the nuclear envelope and lamins. These results suggest that the fs(1)Ya protein is a cell cycle-dependent component of the nuclear envelope that specifically functions in embryonic mitosis.  相似文献   

15.
Early embryonic development in Drosophila melanogaster is marked by a series of thirteen very rapid (10-15 min) and highly synchronous nuclear divisions, the last four of which occur just beneath the embryo surface. A total of some 6000 blastoderm nuclei result, which are subsequently enclosed by furrow membranes to form the cellular blastoderm. We have examined the fine structure of nuclear division in late syncytial embryos. The mitotic spindle forms adjacent to the nuclear envelope on the side facing the embryo surface. During prophase, astral microtubules deform the nuclear envelope which then ruptures at the poles at the onset of prometaphase. The nuclear envelope remains essentially intact elsewhere throughout mitosis. A second envelope begins to form around the nuclear envelope in prometaphase and is completed by metaphase; the entire double layered structure, referred to as the spindle envelope, persists through early in the ensuing interphase. Pole cell spindles are enclosed by identical spindle envelopes. Interphase and prophase nuclei contain nuclear pore complexes (PCs) of standard dimensions and morphology. In prometaphase PCs become much less electron-dense, although they retain their former size and shape. By metaphase, no semblance of PC structure remains, and instead, both layers of the spindle envelope are interrupted by numerous irregular fenestrae. PCs are presumably disassembled into their component parts during mitosis, and reassembled subsequently. Yolk nuclei remain among the central yolk mass when most nuclei migrate to the surface, cease to divide, yet become polyploid. These nuclei nonetheless lose and regain PCs in synchrony with the dividing blastoderm nuclei. In addition, they gain and lose a second fenestrated membrane layer with the same timing. Cytoplasmic membranes containing PCs (annulate lamellae) also lose and regain pores in synchrony with the two classes of nuclear envelopes. The factors that affect the integrity of PCs in dividing blastoderm nuclei appear to affect those in other membrane systems to an equivalent degree and with identical timing.  相似文献   

16.
The nuclear envelope is a complex structure consisting of nuclear membranes, nuclear pore complexes and lamina. Several integral membrane proteins specific to the nuclear pore membrane and the inner nuclear membrane are known. Pore membrane proteins are probably important for organization and assembly of the nuclear pore complex, while proteins of the inner nuclear membrane are likely to play major roles in the structure and dynamics of the nuclear lamina and chromatin. Biochemical studies are now identifying potential binding partners for some of these integral membrane proteins, and analysis of nuclear envelope assembly at the end of mitosis is providing important insights into their functions.  相似文献   

17.
The nuclear envelope, muscular dystrophy and gene expression   总被引:16,自引:0,他引:16  
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease.  相似文献   

18.
Despite rapid advances in our understanding of the function of the nuclear pore complex in nuclear transport, little is known about the role the nuclear envelope itself may play in this critical process. A small number of integral membrane proteins specific to the envelope have been identified in budding yeast, however, none has been reported to affect transport. We have identified an essential gene, BRR6, whose product, Brr6p, behaves like a nuclear envelope integral membrane protein. Notably, the brr6-1 mutant specifically affects transport of mRNA and a protein reporter containing a nuclear export signal. In addition, Brr6p depletion alters nucleoporin distribution and nuclear envelope morphology, suggesting that the protein is required for the spatial organization of nuclear pores. BRR6 interacts genetically with a subset of nucleoporins, and Brr6-green fluorescent protein (GFP) localizes in a punctate nuclear rim pattern, suggesting location at or near the nuclear pore. However, Brr6-GFP fails to redistribute in a (Delta)nup133 mutant, distinguishing Brr6p from known proteins of the pore membrane domain. We hypothesize that Brr6p is located adjacent to the nuclear pore and interacts functionally with the pore and transport machinery.  相似文献   

19.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

20.
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号