首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of human platelets by complement proteins C5b-9 is accompanied by the release of small plasma membrane vesicles (microparticles) that are highly enriched in binding sites for coagulation factor Va and exhibit prothrombinase activity. We have now examined whether assembly of the prothrombinase enzyme complex (factors VaXa) is directly linked to the process of microparticle formation. Gel-filtered platelets were incubated without stirring with various agonists at 37 degrees C, and the functional expression of cell surface receptors on platelets and on shed microparticles was analyzed using specific monoclonal antibodies and fluorescence-gated flow cytometry. In addition to the C5b-9 proteins, thrombin, collagen, and the calcium ionophore A23187 were each found to induce formation of platelet microparticles that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa. These microparticles were enriched in binding sites for factor Va, and their formation paralleled the expression of catalytic surface for the prothrombinase enzyme complex. Little or no microparticle release or prothrombinase activity were observed when platelets were stimulated with epinephrine and ADP, despite exposure of platelet fibrinogen receptors by these agonists. When platelets were exposed to thrombin plus collagen, the shed microparticles contained activated GP IIb-IIIa complexes that bound fibrinogen. By contrast, GP IIb-IIIa incorporated into C5b-9 induced microparticles did not express fibrinogen receptor function. Platelets from a patient with an isolated defect in inducible procoagulant activity (Scott syndrome) were found to be markedly impaired in their capacity to generate microparticles in response to all platelet activators, and this was accompanied by a comparable decrease in the number and function of inducible factor Va receptors. Taken together, these data indicate that the exposure of the platelet factor Va receptor is directly coupled to plasma membrane vesiculation and that this event can be dissociated from other activation-dependent platelet responses. Since a catalytic membrane surface is required for optimal thrombin generation, platelet microparticle formation may play a role in the normal hemostatic response to vascular injury.  相似文献   

2.
The functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin was studied by functional assessment of cofactor activity and Western blotting analyses of platelet releasates, obtained by stimulating washed suspensions of platelets with various agonists, including collagen, collagen with ADP, and the calcium ionophore A23187. Platelet factor V was released as a partially proteolyzed molecule that was bound to platelet microparticles, irrespective of the agonist used. Radiolabeled plasma factor V was not cleaved for up to 30 min following release when added to platelets prior to stimulation, suggesting that platelet factor V was stored in a partially proteolyzed form. Released platelet factor V possessed significant cofactor activity that was increased only 2-3-fold by either factor Xa or thrombin. The factor V subunits that expressed cofactor activity were isolated and found to consist of peptides of Mr = 220,000 and 150,000. Incubation of released platelet factor V with factor Xa or thrombin yielded the same cleavage pattern, in which two peptides of Mr = 105,000 and 74,000 appeared to be electrophoretically indistinguishable from thrombin-activated plasma factor V. Under the conditions of these studies, factor Xa activated platelet-released factor V 50-100 times more effectively than thrombin. This observation may be due in part to the existence of platelet factor V in a partially proteolyzed state, or its association with platelet microparticles following platelet stimulation. These data collectively suggest that platelet-released factor V may be the foremost initiator of prothrombinase complex assembly and function during the early stages of coagulation with additional cofactor activation accomplished by factor Xa.  相似文献   

3.
Recent studies have indicated that factor Va bound to activated platelets is partially protected from inactivation by activated protein C (APC). To explore whether this sustained factor Va activity could maintain ongoing thrombin generation, the kinetics of platelet factor Va-dependent prothrombinase activity and its inhibition by APC were studied. In an attempt to mimic physiologically relevant conditions, platelets were adhered to collagen type I-coated discs. These discs were then spun in solutions containing prothrombin and factor Xa either in the absence or presence of APC. The experiments were performed in the absence of platelet-derived microparticles, with thrombin generation and inhibition confined to the surface of the adherent platelets. APC completely inactivated platelet-associated prothrombinase activity with an overall second order rate constant of 3.3 x 10(6) m(-)1 s(-)1, which was independent of the prothrombin concentration over a wide range around the apparent K(m) for prothrombin. Kinetic studies on prothrombinase assembled at a planar phospholipid membrane composed of 25 mol % phosphatidylserine and 75 mol % phosphatidylcholine revealed a similar second order rate constant of inhibition (2.5 x 10(6) m(-1) s(-1)). Collectively, these data demonstrate that ongoing platelet factor Va-dependent thrombin generation at the surface of collagen-adherent platelets is effectively inhibited by APC. No differences were observed between the kinetics of APC inactivation of plasma-derived factor Va or platelet factor Va as part of the prothrombinase associated with, respectively, a planar membrane of synthetic phospholipids or collagen-adherent platelets.  相似文献   

4.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

5.
Heparin and heparin fragments in the molecular mass range 1,700-20,000 Da were examined for their ability to accelerate the antithrombin III (AT III)-dependent inhibition of human factor Xa and the prothrombin converting complex (prothrombinase) during human prothrombin activation. The prothrombinase reaction was modeled by a 3-parameter 2-exponential equation to determine the initial rate of prothrombin activation and the pseudo-first order rate constants of inhibition of prothrombinase and in situ generated thrombin activity. The catalytic specific activities of the heparins increased with increasing molecular size for both the inhibition of prothrombinase and factor Xa. A 10-fold increase over the entire Mr range was found. In contrast to results obtained by others (Ellis, V., Scully, M. F., and Kakkar, V. V. (1986) Biochem. J. 233, 161-165; Barrowcliffe, T. W., Havercroft, S. J., Kemball-Cook, G., and Lindahl, U. (1987) Biochem. J. 243, 31-37), all the heparins showed a 5-fold higher rate of inhibition of factor Xa when compared with the inhibition of prothrombinase, indicating that the factor Va-mediated protection of factor Xa from inhibition by AT III/heparin is independent of the molecular size of the heparin. Our original approach has also revealed a hitherto unrecognized phenomenon, namely, in addition to the accelerating effect of the heparins on the rate of formation of the inactive AT III-factor Xa complex, heparins with Mr greater than 4,500 reduce the initial rate of thrombin generation in the presence of AT III in a concentration-dependent way. We hypothesize that the formation of the dissociable ternary AT III-heparin-factor Xa complex results in a (partial) loss of factor Xa activity towards its natural substrate prothrombin.  相似文献   

6.
Factor VIII is a cofactor in the tenase enzyme complex which assembles on the membrane of activated platelets. A critical step in tenase assembly is membrane binding of factor VIII. Platelet membrane factor VIII-binding sites were characterized by flow cytometry using either fluorescein maleimide-labeled recombinant factor VIII or a fluorescein-labeled monoclonal antibody against factor VIII. Following activation by thrombin, most platelets bound factor VIII within 90 s. In addition, over the course of several minutes, membranous vesicles (microparticles) were shed from the platelet plasma membrane and each microparticle bound as much factor VIII as a stimulated platelet. Over 30 min, stimulated platelets (but not microparticles) lost the capacity to bind factor VIII. Factor VIII bound saturably to microparticles from platelets stimulated with thrombin, thrombin plus collagen, or the complement proteins C5b-9. The binding of factor VIII was compared to factor V, a structurally homologous coagulation cofactor. Analysis of microparticle binding kinetics yielded similar on and off rates for factor VIII and factor Va and KD values of 2-10 nM. In the presence of 20 nM factor Va, the binding of factor VIII to microparticles was increased, and there was a comparable increase in platelet tenase activity. At higher factor Va concentrations, factor VIII binding and tenase activity were inhibited. Conversely, factor VIII had a similar dose-dependent effect on factor Va binding and platelet prothrombinase activity. Synthetic phospholipid vesicles containing phosphatidylserine competed with microparticles for binding of factor VIII and factor Va. These studies indicate that activated platelets express a transient increase in high affinity receptors for factor VIII, whereas platelet-derived microparticles express a sustained increase in receptors. The binding characteristics of platelet membrane receptors for factor VIII are similar to those for factor Va.  相似文献   

7.
Circulating blood platelets regulate the initial phase of the hemostatic response through adhesive and aggregatory events and by providing the necessary procoagulant surface for prothrombinase complex assembly and thrombin generation. The signaling pathway(s) that regulate platelet procoagulant activity are largely unknown, although they are distinct from platelet aggregatory signals linked to fibrinogen ligation to the conformationally active alpha(IIB)beta(3) integrin. We describe a novel intracellular signaling mechanism involving platelet IQGAP1 that specifically regulates the development of platelet procoagulant activity under conditions of mechanical shear stress. Murine platelets that are deficient in IQGAP1 demonstrate increased prothrombinase activity compared with wild-type littermate controls when activated by a physiological shear stress of 16 dynes/cm(2) (shear rates of 1600 s(-1)) (p < 0.0001), corresponding to approximately 2.5 times the normal shear stress, or approximately 40% degree of stenosis in coronary arteries. The exaggerated prothrombinase activity is not associated with enhanced platelet microvesiculation (cytoskeletal proteolysis) and occurs independently of the intracellular calcium release, [Ca(2+)](i), but it is specifically coupled to the alpha-granule exocytic pathway without concomitant effects on aminophospholipid exposure. These observations identify platelet IQGAP1 as an important modulator of normal hemostasis and as an appropriate pharmacological target for control of platelet procoagulant function.  相似文献   

8.
We have investigated the composition and function of membrane microparticles released from platelets exposed to the C5b-9 proteins of the complement system. Gel-filtered human platelets were incubated with sub-lytic amounts of the purified C5b-9 proteins and the distribution of surface antigens was analyzed using monoclonal antibodies and flow cytometry. C5b-9 assembly caused secretory fusion of the alpha-granule membrane with the plasma membrane and the release of membrane vesicles (approximately 0.1-micron diameter) that contained the plasma membrane glycoproteins (GP) GP Ib and GP IIb-IIIa as well as the alpha-granule membrane protein GMP-140. These microparticles were highly enriched in the C9 neoantigen of the C5b-9 complex. The apparent surface density of C5b-9 on the microparticles was approximately 10(3)-fold higher than on the platelet itself, suggesting that the vesicles were selectively shed from the plasma membrane at the site of C5b-9 insertion. C5b-9 induced the expression of an activation-dependent epitope (recognized by monoclonal antibody, PAC1) in GP IIb-IIIa on the platelet surface but not in GP IIb-IIIa on the microparticles. The surface of the microparticles was also highly enriched in alpha-granule-derived coagulation factor V (or Va), accounting for nearly half of all the membrane-bound factor V detected. The number of potential membrane binding sites for factor Va was probed by adding saturating concentrations of factor Va light chain. Under these conditions, the density of factor Va binding sites on the microparticle surface exceeded that on the C5b-9-treated platelet by three to four orders of magnitude. Moreover, the microparticles provided most of the membrane surface for conversion of prothrombin to thrombin by VaXa. These studies demonstrate that the microparticles shed by C5b-9-treated platelets (and not the platelets themselves) provide the principal binding sites for coagulation factor Va and the principal catalytic surface for the prothrombinase complex. Platelet-derived microparticles formed during complement activation in vivo could provide a membrane surface that facilitates the assembly and dissemination of procoagulant enzyme complexes.  相似文献   

9.
Human prothrombin was acetylated to produce a modified prothrombin that upon activation by platelet-bound prothrombinase generates a form of thrombin that does not activate platelets but retains its amidolytic activity on a chromogenic peptide substrate. If normal prothrombin is used in such an assay, the thrombin that is generated activates the platelets in a feedback manner, accelerating the rate of thrombin generation and thereby preventing accurate measurement of the initial platelet procoagulant activity. Acetylation of prothrombin was carried out over a range of concentrations of sulfo-N-succinimidyl acetate (SNSA). Acetylation by 3 mM SNSA at room temperature for 30 min at pH 8.2 in the absence of metal ions produced a modified prothrombin that has <0.1% clotting activity (by specific prothrombin clotting assay), but it is activated by factor Xa (in the presence of either activated platelets or factor Va + anionic phospholipid) to produce thrombin activity that is measurable with a chromogenic substrate. Because the feedback action on the platelets is blocked, thrombin generation is linear, allowing quantitative measurement of the initial platelet activation state.  相似文献   

10.
In platelets, coagulation cofactor V is stored in complex with multimerin 1 in alpha-granules for activation-induced release during clot formation. The molecular nature of multimerin 1 factor V binding has not been determined, although multimerin 1 is known to interact with the factor V light chain. We investigated the region in factor V important for multimerin 1 binding using modified enzyme-linked immunoassays and recombinant factor V constructs. Factor V constructs lacking the C2 region or entire light chain had impaired and absent multimerin 1 binding, respectively, whereas the B domain deleted construct had modestly reduced binding. Analyses of point mutated constructs indicated that the multimerin 1 binding site in the C2 domain of factor V partially overlaps the phosphatidylserine binding site and that the factor V B domain enhances multimerin 1 binding. Multimerin 1 did not inhibit factor V phosphatidylserine binding, and it bound to phosphatidylserine independently of factor V. There was a reduction in factor V in complex with multimerin 1 after activation, and thrombin cleavage significantly reduced factor V binding to multimerin 1. In molar excess, multimerin 1 minimally reduced factor V procoagulant activity in prothrombinase assays and only if it was added before factor V activation. The dissociation of factor V-multimerin 1 complexes following factor V activation suggests a role for multimerin 1 in delivering and localizing factor V onto platelets prior to prothrombinase assembly.  相似文献   

11.
Kinetics of thrombin-induced release and activation of platelet factor V   总被引:1,自引:0,他引:1  
The kinetics of thrombin-induced platelet factor V activation were studied in suspension of washed human platelets. The effect of thrombin in stimulating the release reaction could be separated from its effect on factor V activation by use of a potent inhibitor of the release reaction, the prostacyclin analogue ZK 36374. When platelets were incubated with ZK 36374 prior to stimulation with thrombin, the amount of ZK 36374 required to inhibit 50% of factor Va formation was 15 pM. ZK 36374 at a final concentration of 1 nM was found to block instantaneously and completely the release of factor Va, whereas it has no effect neither on platelet factor V activation nor on the factor Va assay. By varying the time interval between the addition of thrombin (0.5 nM) and ZK 36374 to suspensions of 4.6 X 10(6) platelets/ml the rate of factor V release was found to be 12 pM factor V/min. In the absence of ZK 36374 the total amount of factor V released was 8 pM, whereas Triton X-100-treated platelets gave 13 pM factor V. It appeared that the amount of factor V that could be released was dependent on the thrombin concentration. Maximum release was obtained at 1 nM thrombin. The rate of factor V release increased in proportion to the thrombin concentration. The rate of factor V activation was found to be proportional to the thrombin concentration as well as to the amount of released factor V. When 4.6 X 10(6) platelets/ml were activated by 0.5 nM thrombin, the rates of factor V activation were found to be 0.3 pM and 1.2 pM factor Va/min at 20% and 90% completion of the release reaction. Therefore, the rate of factor V release was at least one order of magnitude faster than the rate of factor V activation. The kinetics of thrombin-induced platelet factor V activation were compared to those of plasma factor V activation in platelet-rich and platelet-free plasma. The results clearly demonstrate that platelets have no effect on the rate of factor V activation and that the kinetics of plasma factor V activation are identical to those of platelet factor V activation.  相似文献   

12.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

13.
Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle surface is suitable for the anticoagulant reactions of the protein C system, which may be important to balance the initiation and propagation of coagulation in vivo.  相似文献   

14.
Sphingosine 1-phosphate (S1P) is accumulated in platelets and released on stimulation by thrombin or Ca(2+). Thrombin-stimulated S1P release was inhibited by staurosporin, whereas Ca(2+)-stimulated release was not. When the platelet plasma membrane was permeabilized with streptolysin O (SLO), S1P leaked out with cytosol markers, whereas granular markers remained in the platelets. The SLO-induced S1P leakage required BSA, probably for solubilization of S1P in the medium. These results indicate that S1P is localized in the inner leaflet of the plasma membrane and that its release is a carrier-mediated process. We also used alpha-toxin (ATX), which makes smaller pores in the plasma membrane than SLO and depletes cytosolic ATP without BSA-dependent S1P leakage. The addition of ATP drove S1P release from ATX platelets. The ATP-driven S1P release from ATX platelets was greatly enhanced by thrombin. An ATP binding cassette transporter inhibitor, glyburide, prevents ATP- and thrombin-induced S1P release from platelets. Ca(2+) also stimulated S1P release from ATX platelets without ATP, whereas the Ca(2+)-induced release was not inhibited by glyburide. Our results indicate that two independent S1P release systems might exist in the platelet plasma membrane, an ATP-dependent system stimulated by thrombin and an ATP-independent system stimulated by Ca(2+).  相似文献   

15.
A membrane-bound Ca2+-dependent complex of the cofactor Factor Va and the enzyme Factor Xa comprises the prothrombinase coagulation complex which catalyzes the proteolytic conversion of prothrombin to thrombin. Analyses of the kinetics of prothrombin activation permit calculation of the stoichiometry and binding parameters governing the functional interactions of Factor Va and Factor Xa with isolated thrombin-activated human platelets and isolated leukocyte subpopulations. Our kinetic approach indicates that Factor Xa binds to approximately 2700 +/- 1000 (n = 8) functional sites on the surface of thrombin-activated platelets with an apparent dissociation constant (Kd) equal to 1.18 +/- 0.53 X 10(-10) M and kcat equal to 19 +/- 7 mol of thrombin/s/mol of Factor Xa bound. The store of Factor V in normal platelets prevents an analogous determination of the functional Factor Va platelet binding sites. Factor Va and Factor Xa titrations performed using platelets from a Factor V antigen-deficient individual indicate that Factor Va and Factor Xa form a 1:1 stoichiometric complex on the surface of thrombin-activated platelets. Both binding isotherms are governed by the same apparent Kd (approximately equal to 10(-10) M) and expressed the same kcat/site (14-17 s-1. Factor Xa-platelet binding parameters are not altered by the use of different platelet agonists, the choice of anticoagulant, or platelet washing procedure. Kinetics of prothrombin activation indicate also that monocytes, lymphocytes, and neutrophils possess, respectively, 16,000, 45,000, and 8,000 Factor Va-Factor Xa receptor sites/cell, which are all governed by apparent KdS approximately equal to 10(-10) M. Enzymatic complexes bound to monocytes or neutrophils exhibit kcat values similar to the platelet-bound complex. Complexes bound to lymphocytes are only 25% as active.  相似文献   

16.
Factor X(a) (FX(a)) binding to factor V(a) (FV(a)) on platelet-derived membranes containing surface-exposed phosphatidylserine (PS) forms the "prothrombinase complex" that is essential for efficient thrombin generation during blood coagulation. There are two naturally occurring isoforms of FV(a), FV(a1) and FV(a2). These two isoforms differ by a 3-kDa polysaccharide chain (at Asn(2181) in human FV(a1) (Kim, S. W., Ortel, T. L., Quinn-Allen, M. A., Yoo, L., Worfolk, L., Zhai, X., Lentz, B. R., and Kane, W. H. (1999) Biochemistry 38, 11448-11454)) and have different coagulant activities. We examined the interaction of the two bovine isoforms with active site-labeled FX(a), finding no significant difference. A soluble form of PS (C6PS) bound to FV(a1) and FV(a2) with comparable affinities (K(d) = 11-12 microm) and changes in FV(a) intrinsic fluorescence. At concentrations well below its critical micelle concentration, C6PS binding to bovine FV(a2) enhanced its affinity for FX(a) in solution by nearly 3 orders of magnitude (K(d)(eff) = 40-2 nm over a C6PS range of 30-400 microm) but had no effect on the affinity of FV(a1) for FX(a) (K(d) = 1 microm). This results in a soluble complex between FX(a) and FV(a2), whose expected molecular weight was confirmed by calibrated native gel electrophoresis. This complex behaved as a normal Michaelis-Menten enzyme in its ability to produce thrombin from meizothrombin (apparent k(cat)/K(m) congruent with 10(9) m(-1) s(-1)). The ability of soluble PS to trigger formation of a soluble prothrombinase complex suggests that exposure of PS molecules during platelet activation is likely the key event responsible for the assembly of an active membrane-bound complex.  相似文献   

17.
The relationship between platelet calpain-activity and platelet procoagulant-activity was investigated by comparison of the time course of their generation after platelet stimulation by calcium ionophore A23187, or by the combined action of collagen and thrombin, or during exposure of platelets to the local anesthetics dibucaine or tetracaine. In addition, the Ca2+ dose-response curves of both activities in intact platelets, obtained by stimulation with A23187 in the presence of Ca2+/HEDTA-buffers, were compared. Platelet procoagulant activity was determined by assaying for prothrombinase activity in the presence of saturating concentrations of factors Xa, Va, and prothrombin. Platelet calpain activity was monitored by the degradation of its major substrates (filamin, talin, myosin) and the formation of their fragments as judged from protein patterns after gel electrophoresis. Platelet stimulation by A23187 resulted in a fast increase in prothrombinase activity, reaching its maximum level after about 20 seconds. Filamin and talin were completely hydrolysed within 15 s, and myosin was partly degraded between 15 and 30 s after platelet activation. When platelets were activated by collagen plus thrombin, prothrombinase activity was generated with a sigmoid time course, the steepest increase being observed between 1 and 2 min after platelet activation. Proteolysis of filamin and talin occurred between 0.5 and 1.5 min after platelet activation, while degradation of myosin became visible after 2 to 2.5 min. Dibucaine and tetracaine were both found to be potent stimulators of prothrombinase activity, with half-maximal activities obtained at 0.7 and 2.8 mM, respectively. Using suboptimal concentrations of both local anesthetics, it was found that the generation of prothrombinase activity closely paralleled that of calpain activity over a time course of 1 hour. Ca2+ titration of intact platelets using A23187 and Ca2+/HEDTA buffers, revealed half-maximal response at about 15 microM free Ca2+ for both calpain and prothrombinase activity. These findings strongly suggest a causal relationship between generation of a procoagulant platelet surface and calpain-mediated degradation of filamin, talin, and myosin. Since an increased procoagulant activity reflects an increased exposure of phosphatidylserine at the platelet outer surface, the present findings suggest that platelet cytoskeletal proteins are involved in the regulation of membrane lipid asymmetry.  相似文献   

18.
Thrombin interaction with platelets. Influence of a platelet protease nexin   总被引:3,自引:0,他引:3  
A fraction of the 125I-thrombin that binds to human platelets is taken into a sodium dodecyl sulfate-resistant 77 kDa complex with a platelet factor (Bennett, W. F., and Glenn, K. C. (1980) Cell 22, 621-627). Here we show that this platelet factor is in several respects similar to protease nexin I (PNI), a fibroblast thrombin inhibitor. The complexes are of the appropriate size, bind to Sepharose that has been derivatized with anti-PNI antibody, do not form when the thrombin active site has been blocked with diisopropylphosphofluoridate, and do not appear on platelets when heparin is present. However, the platelet factor does not bind urokinase, indicating that this "platelet PN" may be distinct from PNI. Following brief incubation with 125I-thrombin, platelet PN X 125I X thrombin complexes are found both associated with the platelets and free in the binding medium. 125I-Thrombin has a higher affinity for platelet PN than for platelet receptors. In 30-s binding incubations carried out with thrombin at concentrations below 0.3 nM, formation of the 77-kDa complex accounts for most of the platelet specific binding of 125I-thrombin. Subtracting this large contribution to 125I-thrombin-specific binding reveals that the reversible binding of 125I-thrombin to platelet receptors exhibits sigmoidal thrombin dose-dependence. Thrombin stimulation of platelet [14C]serotonin release exhibits similar thrombin dose dependence. These results indicate that platelets may possess a mechanism for suppressing their interaction with active thrombin at thrombin doses below 0.3 nM. It is possible that platelet PN carries out this function by capturing thrombin before thrombin binds to its signal-transmitting receptors.  相似文献   

19.
Membrane-mediated assembly of the prothrombinase complex   总被引:1,自引:0,他引:1  
Prothrombinase assembly was studied on macroscopic planar bilayers consisting of 20% dioleoyl-phosphatidylserine (DOPS) and 80% dioleoyl-phosphatidylcholine (DOPC). The dissociation constant for the binding of factor Xa to the bilayer, measured by ellipsometry, was Kd = 47 +/- 8 nM (mean +/- S.D.) and this value was lowered to Kd = 2.2 +/- 0.3 pM by preadsorption of factor Va. This latter value was determined from direct measurement of steady-state thrombin production. A comparable value of Kd = 1.0 +/- 0.1 pM was found by repeating these experiments in suspensions of phospholipid vesicles, and it was verified that prothrombinase assembly was not influenced by the addition of prothrombin. Using a minute amount (0.094 fmol cm-2) of preadsorbed factor Va, it was found that the rate of prothrombinase assembly exceeds the rate of collisions between Xa molecules from the buffer and the sparse Va molecules on the bilayer. Apparently, factor Xa adsorbs first to the membrane and then associates rapidly with factor Va by lateral diffusion. The data indicate almost instantaneous equilibrium of this complex formation on the surface with a lower limit for the bimolecular rate constant of kon = 2.8 x 10(13) (mol/cm2)-1 s-1. In suspensions of small phospholipid vesicles, prothrombinase assembly is collisionally limited and the value of kon should be proportional to vesicle diameter. This was verified with a method for estimation of kon values from thrombin generation curves. Values of 0.36 x 10(9) and 1.6 x 10(9) M-1 s-1 were found for vesicles of 20-30- and 60-80-nm diameter, respectively.  相似文献   

20.
We analyzed the influence of the atherogenic oxidized low density lipoproteins (LDL) on the activity of the platelet prothrombinase complex, a major contributor to overall thrombin formation in vivo. Platelet dependent thrombin generation was found to be strongly stimulated by in vitro oxidized LDL. The enhancement was additive to that observed with the platelet agonist thrombin. Oxidized LDL increased the platelet binding of annexin-V, suggesting that the augmented surface exposure of aminophospholipids promoted the prothrombinase activity. All of the stimulatory activity of the oxidized LDL could be recovered in the microemulsions prepared from the lipid portion of the modified particles. Phospholipid vesicles were prepared containing the total lipids of the oxidized LDL but lacking specifically in one lipid component. Following the selective removal of the ethanolamine phospholipids (PE) from the LDL lipids, the platelet-dependent thrombin formation was markedly reduced. Vesicles enriched with the isolated PE fraction alone enhanced the thrombin generation. Analyses with autoxidized phospholipids indicated that oxidation products of unsaturated diacyl-PE were mainly responsible for the increased prothrombinase activity. Oxidized LDL and its PE fraction lost their stimulatory activity after treatment with NaCNBH(3), a chemical reductant of Schiff base adducts. Phospholipid vesicles supplemented with synthetic aldehyde-PE adducts largely reproduced the stimulation of the thrombin generation. We conclude that the oxidized LDL particles elicit a pronounced prothrombotic response by increasing the activity of the platelet prothrombinase complex. Specific oxidative modifications of the LDL-associated ethanolamine phospholipids are mainly responsible for this stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号