共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultraviolet irradiation alters the template properties of poly(dC) when replicated by Escherichia coli DNA polymerase I. These effects are due to base modifications. Some of them are identified as apurinic/apyrimidinic sites (AP-sites) by their sensitivity to AP-endonuclease B purified from Micrococcus luteus, and their template properties. The rate of formation of AP-sites in poly(dC) is estimated at 3 X 10(-7) site per nucleotide per J.m-2. Exposure of supercoiled or relaxed pBR322 DNA to UV light results also in the formation of sites sensitive to AP-endonuclease B. In this case, the rate of formation of AP-sites is the same in relaxed or supercoiled DNA: 0.3 X 10(-7) site per nucleotide per J.m-2. The apyrimidinic sites are generated through the processing of an ultraviolet induced primary lesion. We suggest that this lesion is cytosine hydrate by its rate of decay and preferential formation in single stranded DNA. Our results suggest that AP-sites might be a minor pathway leading to UV-induced mutagenesis. 相似文献
2.
Z Livneh 《The Journal of biological chemistry》1986,261(20):9526-9533
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed. 相似文献
3.
N-Acetyl-2-aminofluorene (AAF) is a chemical carcinogen that reacts with guanines at the C8 position in DNA to form a structure that interferes with DNA replication. In bacteria, the NarI restriction enzyme recognition sequence (G1G2CG3CC) is a very strong mutational hot spot when an AAF adduct is positioned at G3 of this sequence, causing predominantly a -2 frameshift GC dinucleotide deletion mutation. In this study, templates were constructed that contained an AAF adduct at this position, and primers of different lengths were prepared such that the primer ended one nucleotide before or opposite or one nucleotide after the adduct site. Primer extension and gel shift binding assays were used to study the mechanism of bypass by the Escherichia coli DNA polymerase I (Klenow fragment) in the presence of these templates. Primer extension in the presence of all four dNTPs produced a fully extended product using the unmodified template, while with the AAF-modified template synthesis initially stalled at the adduct site and subsequent synthesis resulted in a product that contained the GC dinucleotide deletion. Extension product and gel shift binding analyses were consistent with the formation of a two-nucleotide bulge structure upstream of the active site of the polymerase after a nucleotide is incorporated across from the adduct. These data support a model in which the AAF adduct in the NarI sequence specifically induces a structure upstream of the polymerase active site that leads to the GC frameshift mutation and that it is this structure that allows synthesis past the adduct to occur. 相似文献
4.
The effect of Z-conformation of DNA on its template activity in DNA synthesis reactions in vitro has been studied. Normal poly(dG-dC) in the B-form, brominated and unbrominated in the Z-form have been compared for their template activity in DNA synthesis reactions mediated by AMV DNA polymerase and E. coli DNA polymerase I. The results indicate that poly(dG-dC) in the Z-form is totally inactive as a template for DNA synthesis and further that it is a strong competitive inhibitor of copying of the B-form DNA. 相似文献
5.
Inhibition of E. coli DNA polymerase I by 1,10-phenanthroline. 总被引:1,自引:0,他引:1
V D'Aurora A M Stern D S Sigman 《Biochemical and biophysical research communications》1977,78(1):170-176
A 1,10-phenanthroline-cuprous ion complex is a potent reversible inhibitor of DNA polymerase I yielding 50% inhibition in the micromolar concentration range. The 2:1 1,10-phenanthroline-cuprous ion complex is most probably the inhibitory species. Complexes of cupric ion and 1,10-phenanthroline have no apparent kinetic effect. The previously reported inhibition of the enzyme by 1,10-phenanthroline (1,2) is most likely due to the formation of this complex from thiols normally added to the assay mixtures and trace amounts of cupric ion invariably present notwithstanding reasonable precaution. The reversible and instantaneous 1,10-phenanthroline inhibition observed for other polymerases may be due to this unique inhibitory species and not coordination of a catalytically important zinc ion at the active site by the chelating agent. 相似文献
6.
Kotlyar A Borovok N Molotsky T Klinov D Dwir B Kapon E 《Nucleic acids research》2005,33(20):6515-6521
The extension of the G-strand of long (700 bp) poly(dG)–poly(dC) by the Klenow exo− fragment of DNA polymerase I yields a complete triplex structure of the H-DNA type. High-performance liquid chromatography analysis demonstrates that the length of the G-strand is doubled during the polymerase synthesis. Fluorescence resonance energy transfer analysis shows that the 5′ ends of the G- and the C-strands, labeled with fluorescein and TAMRA, respectively, are positioned close to each other in the product of the synthesis. Atomic force microscopy morphology imaging shows that the synthesized structures lack single-stranded fragments and have approximately the same length as the parent 700 bp poly(dG)–poly(dC). CD spectrum of the polymer has a large negative peak at 278 nm, which is characteristic of the poly(dG)–poly(dG)–poly(dC) triplex. The polymer is resistant to DNase and interacts much more weakly with ethidium bromide as compared with the double-stranded DNA. 相似文献
7.
In this paper, we describe a production procedure of the one-to-one double helical complex of poly(dG)–poly(dC), characterized by a well-defined length (up to 10 kb) and narrow size distribution of molecules. Direct evidence of strands slippage during poly(dG)–poly(dC) synthesis by Klenow exo− fragment of polymerase I is obtained by fluorescence resonance energy transfer (FRET). We show that the polymer extension results in an increase in the separation distance between fluorescent dyes attached to 5′ ends of the strands in time and, as a result, losing communication between the dyes via FRET. Analysis of the products of the early steps of the synthesis by high-performance liquid chromatography and mass spectroscopy suggest that only one nucleotide is added to each of the strand composing poly(dG)–poly(dC) in the elementary step of the polymer extension. We show that proper pairing of a base at the 3′ end of the primer strand with a base in sequence of the template strand is required for initiation of the synthesis. If the 3′ end nucleotide in either poly(dG) or poly(dC) strand is substituted for A, the polymer does not grow. Introduction of the T-nucleotide into the complementary strand to permit pairing with A-nucleotide results in the restoration of the synthesis. The data reported here correspond with a slippage model of replication, which includes the formation of loops on the 3′ ends of both strands composing poly(dG)–poly(dC) and their migration over long-molecular distances (μm) to 5′ ends of the strands. 相似文献
8.
Copying natural RNAs with E. coli DNA polymerase I 总被引:4,自引:0,他引:4
9.
10.
The fidelity of DNA replication by Escherichia coli DNA polymerase I (pol I) was assessed in vivo using a reporter plasmid bearing a ColE1-type origin and an ochre codon in the beta-lactamase gene. We screened 53 single mutants within the region Val(700)-Arg(712) in the polymerase active-site motif A. Only replacement of Ile(709) yielded mutator polymerases, with substitution of Met, Asn, Phe, or Ala increasing the beta-lactamase reversion frequency 5-23-fold. Steady-state kinetic analysis of the I709F polymerase revealed reductions in apparent K(m) values for both insertion of non-complementary nucleotides and extension of mispaired primer termini. Abolishment of the 3'-5' exonuclease activity of wild-type pol I increased mutation frequency 4-fold, whereas the combination of I709F and lack of the 3'-5' exonuclease yielded a 400-fold increase. We conclude that accurate discrimination of the incoming nucleotide at the polymerase domain is more critical than exonucleolytic proofreading for the fidelity of pol I in vivo. Surprisingly, the I709F polymerase enhanced mutagenesis in chromosomal DNA, although the increase was 10-fold less than in plasmid DNA. Our findings indicate the feasibility of obtaining desired mutations by replicating a target gene at a specific locus in a plasmid under continuous selection pressure. 相似文献
11.
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions. 相似文献
12.
13.
Modulation of the affinity of the single-stranded DNA-binding protein of Escherichia coli (E. coli SSB) to poly(dT) by site-directed mutagenesis 总被引:4,自引:0,他引:4
A vector for site-directed mutagenesis and overproduction of the Escherichia coli single-stranded-DNA-binding protein (E. coli SSB) was constructed. An E. coli strain carrying this vector produces up to 400 mg pure protein from 25 g wet cells. The vector was used to mutate specifically the Phe60 residue of E. coli SSB. Phe60 had been proposed to be located near the single-stranded-DNA-binding site. Substitution of the Phe60 residue by Val, Ser, Leu, His, Tyr and Trp gave proteins with no or only minor conformational changes, as detected by NMR spectroscopy. The affinity of the mutant E. coli SSB proteins for single-stranded DNA decreased in the order Trp greater than Phe (wild-type) greater than Tyr greater than Leu greater than His greater than Val greater than Ser, leading to the conclusion that position 60 is a site of hydrophobic interaction of the protein with DNA. 相似文献
14.
A 2 kilobase pair cDNA coding for the entire C-terminal catalytic domain of rat poly(ADP-ribose)polymerase has been expressed in E. coli. The overproduced 55 kDa polypeptide is active in synthesizing poly(ADP-ribose) and the 4 kDa N-terminal region of this domain is recognized by the monoclonal antibody C I,2 directed against the calf enzyme. Also, the minor alpha-chymotrypsin cleavage site found in the human catalytic domain is not present in the rat enzyme as revealed by the absence of the 40 kDa specific degradation product in the E. coli cells expressing the rat domain. The expression of this partial rat cDNA should thus permit the rapid purification and subsequent crystallization of the catalytic domain of the enzyme. 相似文献
15.
16.
17.
18.
19.
20.