首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that in vivo antibody production to HBsAg in the mouse is regulated by at least two immune response (Ir) genes mapping in the I-A (HBs-Ir-1) and I-C (HBs-Ir-2) subregions of the H-2 locus. To confirm that H-2-linked Ir genes regulate the immune response to HBsAg at the T cell level and to determine if the same Ir genes function in T cell activation as in B cell activation, the HBsAg-specific T cell responses of H-2 congenic and intra-H-2 recombinant strains were analyzed. HBsAg-specific T cell proliferation, IL 2 production, and the surface marker phenotype of the proliferating T cells were evaluated. Additionally, T cell-antigen-presenting cell (APC) interactions were examined with respect to genetic restriction and the role of Ia molecules in HBsAg presentation. The HBsAg-specific T cell proliferative responses of H-2 congenic and intra-H-2 recombinant strains generally paralleled in vivo anti-HBs production in terms of the Ir genes involved, the hierarchy of responses status among H-2 haplotypes, antigen specificity, and kinetics. However, the correlation was not absolute in that several strains capable of producing group-specific anti-HBs in vivo did not demonstrate a group-specific T cell proliferative response to HBsAg. The proliferative responses to subtype- and group-specific determinants of HBsAg were mediated by Thy-1+, Lyt-1+2- T cells, and a possible suppressive role for Lyt-1-2+ T cells was observed. In addition to T cell proliferation, HBsAg-specific T cell activation could be measured in terms of IL 2 production, because anti-HBs responder but not nonresponder HBs-Ag-primed T cells quantitatively produced Il 2 in vitro. Finally, the T cell proliferative response to HBsAg was APC dependent and genetically restricted in that responder but not nonresponder parental APC could reconstitute the T cell response of (responder X nonresponder)F1 mice, and Ia molecules encoded in both the I-A and I-E subregion are involved in HBsAg-presenting cell function.  相似文献   

2.
Immunization of mice with ABA coupled to carriers to which they are nonresponders gives rise to ABA-specific proliferative responses in lymph node cells. When C3H/HeN and CBA/J nonresponder mice are immunized with ABA on (T,G)-A-L (an I-A-restricted carrier in responder mice), the responses to ABA-tyr and ABA coupled to a variety of unrelated carriers are solely I-A restricted as determined by inhibition with anti-IA and anti-I-E sera. When ABA on GLT (an I-E-restricted carrier in responder mice) is used for immunization, the responses are both I-A and I-E restricted. Thus, ABA-specific responses in nonresponder mice appear in part to be restricted by the carrier used for immunization. B10.S mice, lacking functional I-E molecules, channel their ABA-specific responses entirely through I-A when immunized with ABA-GLT. These results support the hypothesis that the failure in nonresponders lies in a functional deficit in the T cell repertoire rather than an inability of accessory cells to present antigen.  相似文献   

3.
Experiments have been carried out to examine the potential helper T cell repertoire specific for the random terpolymer GAT on responder, nonresponder, and (responder x nonresponder)F1 murine strains. The ability of GAT-MBSA immunized T cells to collaborate with DNP-specific primary and secondary B lymphocytes of each strain in response to the antigen DNP-GAT was tested with the splenic fragment culture system. The results of these experiments show that there are GAT-specific T lymphocytes in the responder, nonresponder, and F1 strains but that these 3 GAT-specific T cell populations differ in their collaborative potential. In sum, these findings present new evidence that the nonresponder status to the terpolymer GAT is due, in part, to a functional deletion of helper T cells capable of recognizing the antigen in the context of the nonresponder haplotype. Further, a new responsive phenotype is evidenced when F1 secondary B cells are stimulated in nonresponder GAT-MBSA-primed recipients. In this case, rather than the IgG1 responses observed in such strain combinations to other antigens such as DNP-Hy or DNP-Gl phi 9, only IgM responses were obtained. This new phenotype may be the result of GAT-specific suppression of isotype switching by B cells bearing the nonresponder cell surface alloantigens.  相似文献   

4.
A xenogeneic rat anti-mouse Ia monoclonal antibody, M5/114 (gamma 2b, kappa), was studied for its effects in vitro on T cell proliferative responses. Strain distribution studies revealed that M5/114 could inhibit I-A subregion-restricted T cell responses of the H-2b,d,q,u but not the H-2f,k,s haplotypes, indicating that this xenoantibody recognizes a polymorphic determinant on mouse Ia molecules. This same monoclonal antibody was found to inhibit BALB/c (H-2d) T cell proliferation to both G60A30T10 and G58L38 phi 4. The Ir genes regulating responses to these antigens map to either the I-A subregion (GAT), or the I-A and I-E subregions (GL phi), raising the possibility that M5/114 recognizes both I-A and I-E subregion-encoded Ia glycoproteins. It could be shown, using appropriate F1 responding cells, that M5/114 does in fact affect GAT and GL phi responses by interaction with both the I-A and the I-E subregion products, and not by any nonspecific effect resulting from binding to the I-A subregion product alone. These results are consistent with genetic and biochemical studies directly demonstrating that M5/114 recognizes A alpha A beta and E alpha E beta molecular complexes. The existence of a shared epitope on I-A and I-E subregion products suggests the possibility that these molecules arose by gene duplication. Finally, the precise correlation between the Ia molecules recognized by M5/114 and the ability of this antibody to block T cell responses under Ir gene control strengthens the hypothesis that Ia antigens are Ir gene products.  相似文献   

5.
T cell proliferative responses to the synthetic polypeptides GAT and GLPhe are under Ir gene control. GAT responses are regulated by gene(s) in the I-A subregion, and GLPhe responses are controlled by a pair of complementing genes mapping to the I-A and I-E subregions. We demonstrate that monoclonal antibody to the I-A gene product inhibits GAT proliferation but not the GLPhe response, whereas a monoclonal antibody to the I-E associated Ia-7 determinant inhibits GLPhe but not GAT proliferation, which indicates independent involvement of each Ia determinant in antigen presentation for the T cell response to these antigens. Use of the same subregion-specific monoclonal antibodies in complement-dependent lysis demonstrates that the antigen-presenting cells for GAT and GLPhe express both I-A and I-E products. The possibility that an Ia subregion-specific "self-receptor" functions on the reactive T cells as a regulatory element is discussed.  相似文献   

6.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

7.
The supernatant from Mycoplasma arthritidis broth cultures (MAS) contains a T cell mitogen that is under Ir gene control. Responsiveness to this mitogen is dictated by the I-E/I-C subregion of the major histocompatibility complex and is dependent upon adherent radioresistant Ia+ accessory cells from responding haplotype animals. In this study, we established that MAS could be removed from culture supernatants by absorption with spleen cells from mice that themselves are responsive to the mitogen (k and d haplotypes), but activity is not removed by spleen cells from mouse strains that are nonresponsive to the mitogen (b, q, and s haplotypes). Absorption studies with lymphoid cells from congenic and recombinant strain mice established that absorption of the mitogen was itself linked to the I-E/I-C subregion of the major histocompatibility complex. Thymocytes from responding haplotype strains were incapable of removing MAS activity, and spleen cells devoid of Thy-1-positive cells retained their full absorbing capacity. The ability to effectively absorb MAS activity was abrogated by the pretreatment of spleen cells with anti-Ia antiserum and complement. Furthermore, the ability of spleen cells from responding haplotype strains to respond to MAS was blocked by the addition of anti-Ia serum to the cell cultures. Whereas the latter treatment resulted in an almost complete elimination of MAS responsiveness, the ability of similarly treated spleen cells to respond to the mitogens PHA and Con A was only minimally depressed. These results are consistent with our hypothesis that the mitogenic moiety of MAS actually binds to I-E/I-C-coded Ia antigens.  相似文献   

8.
Immunization of mice with the ABA-GAT conjugate stimulates GAT-specific T helper cells in GAT-responder animals and ABA-specific helpers in nonresponders. Unexpectedly, immunization of (responder X nonresponder) F1 mice, which have the GAT-responder phenotype, leads to the recruitment of both ABA- and GAT-specific clones of T helper lymphocytes. The GAT-reactive population is restricted to the haplotype of the responder parent (Iak), whereas ABA-specific T cells are mostly restricted to the nonresponder one (Ias). This is demonstrated by the ability of monoclonal antibodies to parental la antigens to inhibit T cell proliferation to GAT or ABA-Tyr in vitro. Consistently, ABA-GAT-primed F1 T cells can only activate nonresponder B cells to proliferate in the presence of ABA-Tyr and responder B lymphocytes in the presence of GAT. Furthermore, F1 T cells seem to recognize both ABA and GAT epitopes only in association with molecules encoded by the I-A subregion. Analysis of ABA-specific F1 T cell lines generated by in vitro stimulation with ABA-Tyr or ABA-GAT demonstrates a competition between GAT- and ABA-specific T cells present in the hybrid T cell repertoire and restricted to the same parental I-Ak molecule. The results indicate that F1 macrophages can present both ABA and GAT epitopes to T cells in association with the two parental and hybrid Ia determinants. It seems unlikely that the absence of GAT-specific T cells restricted to the nonresponder I-A in the F1 is due to suppressor T cells. Thus, the competition model that we propose, to explain the selective F1 T cell response to ABA-GAT, leads us to believe that GAT nonresponder animals may lack clones capable of recognizing, with a high affinity, I-As + GAT.  相似文献   

9.
The recent development of a reliable murine T lymphocyte proliferation assay has facilitated the study of T lymphocyte function in vitro. In this paper, the effect of anti-histocompatibility antisera on the proliferative response was investigated. The continuous presence of anti-Ia antisera in the cultures was found to inhibit the responses to the antigens poly (Glu58 Lys38 Tyr4) [GLT], poly (Tyr, Glu) ploy D,L Ala-poly Lys [(T,G)-A--L], poly (Phe, Glu)-poly D,L Ala-poly Lys [(phi, G)-A--L], lactate dehydrogenase H4, staphylococcal nuclease, and the IgA myeloma protein, TEPC 15. The T lymphocyte proliferative responses to all of these antigens have previously been shown to be under the genetic control of major histocompatibility-linked immune response genes. The anti-Ia antisera were also capable of inhibiting proliferative responses to antigens such as PPD, to which all strains respond. In contrast, antisera directed solely against H-2K or H-2D antigens did not give significant inhibition. Anti-Ia antisera capable of reacting with antigens coded for by genetically defined subregions of the I locus were capable of completely inhibiting the proliferative response. In the two cases studied, GLT and (T,G)-A--L, an Ir gene controlling the T lymphocyte proliferative response to the antigen had been previously mapped to the same subregion as that which coded for the Ia antigens recognized by the blocking antisera. Finally, in F1 hybrids between responder and nonresponder strains, the anti-Ia antisera showed haplotype-specific inhibition. That is, anti-Ia antisera directed against the responder haplotype could completely block the antigen response controlled by Ir genes of that haplotype; anti-Ia antisera directed against Ia antigens of the nonresponder haplotype gave only partial or no inhibition. Since this selective inhibition was reciprocal depending on which antigen was used, it suggested that the mechanism of anti-Ia antisera inhibition was not cell killing or a nonspecific turning off of the cell but rather a blockade of antigen stimulation at the cell surface. Furthermore, the selective inhibition demonstrates a phenotypic linkage between Ir gene products and Ia antigens at the cell surface. These results, coupled with the known genetic linkage of Ir genes and the genes coding for Ia antigens, suggest that Ia antigens are determinants on Ir gene products.  相似文献   

10.
Cloned, protein antigen-specific, Ia-restricted T cell lines frequently (approximately 20%) also respond strongly to stimulator cells from strains expressing stimulatory alleles at the chromosome 1-encoded Mls-locus. Furthermore, such responses are blocked by monoclonal antibodies specific for Ia antigens expressed by the stimulator rather than the responder cells. However, such responses show no specificity for polymorphic determinants on Ia molecules, although in such responses, as in primary and secondary T cell responses to stimulating Mls-locus alleles, I-E molecules appear to play a central role. These results, combined with the unique immunobiology of the primary T cell proliferative response to Mls-locus-disparate stimulator cells, suggest to us that this response involves the interaction of the receptor on T cells for antigen:self Ia with a relatively nonpolymorphic region of Ia glycoproteins. This hypothesis is supported by the observation that a monoclonal antibody to the T cell receptor will inhibit both responses, although the response to Mls-locus-disparate stimulators appears to be more sensitive to these antibodies. We propose that the interaction of the T cell receptor with Ia is stabilized by a cell interaction molecule encoded or regulated by the Mls-locus gene product permitting the T cell receptor:Ia glycoprotein interaction to lead to T cell activation.  相似文献   

11.
Identity at the major histocompatibility complex (MHC) of primed T cells and macrophages was essential for the development of a T cell proliferative response to Purified Protein Derivative of tuberculin (PPD) in the presence of macrophage-associated antigen and potential allogeneic effects were eliminated by the use of one-way fetal liver chimeras as a T cell source. By contrast, such MHC restriction could not be shown for the T cell—macrophage interaction when antigen was present in soluble form.It was found that the proliferative response of primed (responder × nonresponder) F1 T cells to the Ir-gene controlled antigen, TNP-18 [Glu-Tyr-Lys (TNP) (Glu-Tyr-Ala)5], could only be restored by responder macrophages with bound antigen, while both responder and nonresponder macrophages reconstituted the response to soluble TNP-18. Supernatants from cultured responder or nonresponder macrophages could at least partially replace viable macrophages in the latter case.These results argue for two distinct antigen presentation mechanisms, depending on the physical state of the antigen rather than its chemical nature: one involves recognition of antigen in association with MHC-coded determinants and shows H-2 restriction, while the other, mediated by soluble factors and antigen, does not.  相似文献   

12.
The T cell antigen L-tyrosine-p-azobenzenearsonate is unique in being a simple determinant that can be presented in the context of both I-A and I-E. I-E-restricted T cell clones derived from B10.A(5R) mice were found to fall into three groups: Type I clones recognized antigen only in the context of syngeneic apcs, Type II clones recognized antigen with the same highly specific major histocompatibility complex restriction but in addition proliferated in response to allogeneic stimuli; Type III clones were "degenerate" in their major histocompatibility complex-restricted recognition of antigen and proliferated when antigen-presenting cells bearing Eb beta Ek alpha (syngeneic), Ek beta Ek alpha, or Ed beta Ed alpha were used. These observations allow some conclusions to be drawn about sites on the I-E molecule that may be functionally significant in the presentation of this antigen. By using the B cell hybridoma LK35.2 as target cells, some of these T cell clones act as cytotoxic cells in the Class II-restricted manner predicted from the results of proliferative assays. Class II-restricted cytotoxicity can therefore be controlled by both I-A and I-E mouse Ir gene loci.  相似文献   

13.
When MHC congenic and recombinant mice are inoculated with Torpedo acetylcholine receptors (AChR) with adjuvants, the magnitude of autoantibody responses to muscle AChR and the defect of neuromuscular transmission closely parallel in vitro lymphocyte proliferative responses to Torpedo AChR. All of these responses are controlled by gene(s) at the I-A subregion of the H-2 complex. Data presented in this report confirm in back-cross mice that T lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, at the I-A subregion. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with appropriate anti-I-A alloantisera and by removal of adherent cells. A spontaneous mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the A beta chain of Ia, converted high responsiveness to AChR to a state of low responsiveness. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AchR, probably in the presentation of AChR to helper T lymphocytes that thereby help B lymphocytes to differentiate into anti-AChR antibody-forming cells.  相似文献   

14.
Responder cells from primary syngeneic and allogeneic one-way mixed-lymphocyte cultures (MLC) specifically inhibit the development of cytotoxic T lymphocytes (CTL) directed against the major histocompatibility complex (MHC) antigens of the MLC responder cells. This special kind of suppressor activity is known as veto suppression. Ia+ cells with veto activity obtained from H-2 recombinant mouse strains were shown to downregulate alloantigen (class II)-specific helper activity for class I-specific CTL development in a primary MLC provided that the veto cells expressed the same I-E alpha subregion as the MLC stimulator cells. The veto-induced suppression of allo-help was prevented by the addition of supernatant from concanavalin A-stimulated spleen cells (Con A-SN) and was inhibited considerably by very high amounts of recombinant interleukin-2 (IL-2). In the presence of Con A-SN, CTL precursors recognizing either the K end or the D end of the veto cell MHC were found to be inactivated. Thus, our results indicate that MLC responder cells include active veto cells expressing Ia region-encoded restriction elements for allospecific T helper cells, as well as K- or D-encoded restriction elements for allospecific T cytotoxic cells.  相似文献   

15.
A T-cell mitogen present in culture supernatants of Mycoplasma arthritidis (MAS) is known to exhibit an absolute dependence on E alpha-bearing accessory cells (AC), which appear to function by binding the mitogen. We therefore compared the specificity and nature of the AC requirements for MAS and antigen-induced production of IL 2 in T hybridoma cell lines originating from a fusion by using hen egg-white lysozyme (HEL)-specific, H-2d-restricted T blasts. A marked specificity was noted in the ability of the hybridoma lines to become activated by Con A, MAS, or HEL antigen. Thus all three lines produced IL 2 in response to Con A without the addition of B lymphoma AC. Two lines responded to MAS, but only in the presence of AC, and only one line responded to HEL antigen in the presence of AC. Using the HEL responsive T hybridoma line, we demonstrated that disrupted AC and AC membranes could present MAS but not HEL. MAS rapidly associated with AC at 4 degrees C, whereas HEL failed to do so. Paraformaldehyde-fixed AC could absorb the mitogen in MAS and present it to T hybridoma cells within several minutes, whereas HEL antigen could only be presented by fixed AC if there was a prolonged period of incubation (greater than 30 min) at 37 degrees C before fixation. The combined data indicate that metabolically active cells are not required for the association of MAS with AC or for presentation of MAS to T hybridomas. In contrast, HEL antigen requires metabolically active cells for both of these processes. Thus, the mitogen in MAS can bind to AC without any processing requirements, and it is likely that the resulting complex of mitogen and Ia molecules can directly activate T hybridoma cells.  相似文献   

16.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   

17.
Influenza A viruses of the H2, H3, and H6 subtypes function as T cell-independent B cell mitogens for lymphocytes from BALB/c mice. Lymphocytes from C57BL/10 mice, however, undergo mitogenesis only in response to H3 viruses. The failure of C57BL/10 lymphocytes to respond to H2 and H6 viruses was shown not to reflect a difference in dose-response profile or kinetics of the response, nor was it due to the activity of suppressor T cells. Experiments with congenic and recombinant strains of mice established that mitogenic responsiveness to H2 and H6 viruses is linked to the major histocompatibility complex, and is controlled by a gene located in the I-E/C subregion. Furthermore, responsiveness was shown to correlate with the expression of surface I-E antigen, being positive for mouse strains that express I-E antigen (haplotypes a, d, k, p, r) and negative for strains that do not (haplotypes b, f, q, s). The data suggest that influenza A viruses of the H2 and H6 subtypes may interact directly with I-E molecules on the surface of B cells or possibly on an accessory cell. Because mitogenesis by H3 viruses is not I-E dependent, it appears that influenza A viruses stimulate B cell mitogenesis by at least two different mechanisms.  相似文献   

18.
Human FcR for IgG can be divided into three classes (Fc gamma RI, II, and III) based on their structure and reactivity with mAb. Fc gamma RII can be further subdivided into two categories based on functional and biochemical assays. These two Fc gamma RII subtypes were initially recognized by the failure of T cells from 40% of individuals to proliferate in response to mAb Leu 4 (mouse IgG1, anti-CD3), a response that requires the binding of the Fc region of the Leu 4 mAb to Fc gamma RII on monocyte accessory cells. Inas-much as mouse IgG1, does not bind efficiently to the nonresponder form of Fc gamma RII, mAb Leu 4 is unable to induce proliferation in these individuals. IEF data on Fc gamma RII from Leu 4 responder and nonresponder individuals suggested that the structural gene for Fc gamma RII consisted of two allelic forms R (responder) and N (nonresponder) producing the phenotypes RR, RN, and NN. Thus, exclusive expression of the nonresponder allele in monocytes of "nonresponder" individuals, appeared to be responsible for the lack of proliferation observed. In cooperation with the IVth International Conference on Human Leukocyte Differentiation Antigens, we analyzed CDw32 mAb to determine if they could distinguish the responder and nonresponder forms of Fc gamma RII. We report that mAb 41H16 binds preferentially to the responder allotypic form of Fc gamma RII expressed on human monocytes. When quantitative flow cytometry is used to measure the binding of both mAb 41H16 (responder Fc gamma RII) and mAb IV.3 (all myeloid cell Fc gamma RII), we are able to subdivide the responder population into homozygous and heterozygous responders. In addition, mAb 41H16 blocks the binding of mAb IV.3 to monocytes and inhibits proliferation when added to cells before addition of mAb Leu 4. We also show that polymorphonuclear leukocytes and platelets have the same allotypic differences in the binding of 41H16 as do monocytes. However, a subset of lymphocytes (previously shown to be B cells) expresses the 41H16 epitope with no evidence for donor to donor variability.  相似文献   

19.
Cooperative interactions between T and B cells from the congenic inbred mouse strains B10.A(2R) and B10.A(4R) in antibody responses controlled byIr genes have been studied. Within theI region of the MHC, these strains share only theI-A subregion. TheIr gene controlling responsiveness to IgA maps in theI-A subregion, both strains being responders to IgA. T cells from 2R mice collaborate effectively with B cells from 2R or 4R mice for antihapten antibody responses to DNP-IgA. TheIr gene controlling responses to IgG maps in theI-B subregion, and 2R mice are nonresponders for this antigen. Nevertheless, 2R T cells primed with IgG can help responder (4R) B cells -but not syngeneic nonresponder (2R) B cells -in responding to DNP-IgG. These results indicate that mice lacking theIr-IgG gene nonetheless may develop helper T lymphocytes specific for myeloma proteins. In addition, they indicate that cells from congenic mice sharing only theA subregion of theI region can collaborate efficiently.  相似文献   

20.
Murine T cell proliferative and antibody responses to the multi-determinant protein bovine serum albumin (BSA) are controlled by Ir genes mapping within the H-2 gene complex. Strains possessing the H-2k, H-2a, and H-2d haplotypes are classified as high responders to BSA. In contrast, H-2b strains are low responders to BSA. Genetic mapping experiments employing strains with recombinant H-2 haplotypes indicate that both T cell proliferative and antibody responses are at least in part regulated by genes within the I-A subregion. Studies on the inhibition of T cell proliferation by monoclonal anti-Ia antibodies are consistent with the assignment of an Ir gene for BSA to the I-A subregion and strongly suggest a role for genes within the I-E/C subregions as well. The MHC-mediated control of antibody responses did not affect the affinity or the isotype of the antibody produced. The relative quantities of antibody specific for each of the three domains of BSA appears to be regulated by H-2-linked BSA Ir genes, and domain III antigenic determinants were found to be dominant in the responses of low-responder mice and in the early response of high-responder mice. This domain III epitope dominance essentially disappears by the tertiary response of high-responder mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号