首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monomeric and dimeric forms of bovine cytochrome c oxidase (EC 1.9.3.1) were obtained from gel filtration chromatography on Ultrogel AcA 34 and analyzed. Both species contained all 12-13 subunits described for this enzyme. In the dimer 320 molecules [3H]dodecyl-beta-D-maltoside were bound per heme aa3 and in the monomer 360 molecules per heme aa3. The monomers contained 10 mol of tightly bound phospholipid/mol heme aa3 and the dimers 14. Sedimentation coefficients of 15.5-18 S for the dimer and 9.6 S for the monomer were calculated from sucrose density centrifugation analysis and analytical centrifugation. By the laser beam light-scattering technique a Stokes radius of 70 A for the dimeric detergent-lipid-protein complex was measured. From those parameters and the densitometric determined partial specific volumes of the detergent and the enzyme, the molecular weights of 400,000 for the protein moiety of the dimer and 170,000-200,000 for the monomer were calculated. Under very low ionic strength conditions the monomer/dimer equilibrium was found to be dependent on the protein concentration. At low enzyme concentrations (10(-9) M) monomers were predominant, whereas at concentrations above 5 X 10(-6) M the amounts of dimers and higher aggregates were more represented. The cytochrome c oxidase activity, measured spectrophotometrically and analyzed by Eadie-Hofstee plot, was biphasic as a function of cytochrome c concentration for the dimeric enzyme. Pure monomers gave monophasic kinetics. The data, fitting with a homotropic negative cooperative mechanism for the dimer of cytochrome c oxidase, are discussed and compared with other described mechanisms.  相似文献   

2.
Chemokine dimerization has been the subject of much interest in recent years as evidence has accumulated that different quaternary states of chemokines play different biological roles; the monomer is believed to be the receptor-binding unit, whereas the dimer has been implicated in binding cell surface glycosaminoglycans. However, although several studies have provided evidence for this paradigm by making monomeric chemokine variants or dimer-impaired chemokines, few have provided direct evidence of the receptor function of a chemokine dimer. We have produced a covalent dimer of the CC chemokine macrophage inflammatory protein-1beta (MIP-1beta) by placing a disulfide bond at the center of its dimer interface through a single amino acid substitution (MIP-1beta-A10C). This variant was shown to be a nondissociating dimer by SDS-PAGE and analytical ultracentrifugation. NMR reveals a structure largely the same as the wild type protein. In studies of glycosaminoglycan binding, MIP-1beta-A10C binds to a heparin-Sepharose column as tightly as the wild type protein and more tightly than monomeric variants. However, MIP-1beta-A10C neither binds nor activates the MIP-1beta receptor CCR5. It was found that the ability to activate CCR5 was recovered upon reduction of the intermolecular disulfide cross-link by incubation with 1 mm dithiothreitol. This work provides the first definitive evidence that the CC chemokine MIP-1beta dimer is not able to bind or activate its receptor and implicates the CC chemokine monomer as the sole receptor-interacting unit.  相似文献   

3.
A 45-fold purification of uricase (urate:O2 oxidoreductase, EC 1.7.3.3) from soybean root nodules by ammonium sulfate fractionation, gel filtration, and affinity chromatography is described. Electrophoresis on nondenaturing gels using an activity stain or on sodium dodecyl sulfate (SDS) gels demonstrated that the enzyme obtained was nearly homogeneous. The subunit molecular weight of uricase estimated from SDS gels was 32,000 ± 3000. Gel-filtration studies indicated that the native enzyme is a monomer at pH 7.5 which associates to form a dimer at pH 8.8. Enzyme activity was stabilized by the addition of dithiothreitol. The pH dependence of the enzyme showed an optimum of 9.5. Initial rate kinetics showed Km values of 10 and 31 μm for uric acid and oxygen, respectively, with an intersecting pattern of substrate dependence. Uricase activity was inhibited strongly by xanthine, which was competitive with respect to uric acid (Ki = 10 μm). No significant inhibition was observed in the presence of a variety of amino acids, ammonium, adenine, or allopurinol, in contrast with results reported for the cowpea enzyme. Gel-filtration chromatography and SDS-gel electrophoresis of uricase purified by the same method from cowpea nodules indicated that the native enzyme exists as a monomer of Mr 50,000 at pH 7.5.  相似文献   

4.
驱动蛋白kinesin-3家族中的KIF1A蛋白主要参与轴突上分泌囊泡前体的正向运输.KIF1A中的CC1-FHA片段能够形成稳定的二聚体结构,同时促进驱动蛋白的活性,但是其具体的调节机制尚未清楚.基于已有的CC1-FHA二聚体的晶体结构,我们发现在二聚体表面的"487SPKK490"位置存在潜在的磷酸化位点.证明了将487位点模拟磷酸化后将导致CC1-FHA二聚体的解聚.进一步,在487位点进行点突变将影响KIF1A的活性以及线虫中KIF1A介导的突触囊泡在轴突上的运输.因此,高度保守的"487SPKK490"可能对CC1-FHA片段二聚化和调节KIF1A活性起着关键性作用.  相似文献   

5.
In this work, we investigated how activity and oligomeric state are related in a purified GH1 β‐glucosidase from Spodoptera frugiperda (Sfβgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5‐fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfβgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfβgly concentration. These data indicated that Sfβgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 β‐glucosidases, but it can also help to elucidate protein interaction pathways.  相似文献   

6.
An improved method for purifying the bisphosphoglycerate-independent phosphoglycerate mutase from wheat germ has been devised. The method yields enzyme with a specific activity of 2,300 units/mg in 0.1 M Tris-C1 at pH 8.7 and 30 degrees C. Electrophoresis on electrofocusing and analytical polyacrylamide gels reveals only one protein band (pI = 7.3); however, under denaturing conditions (sodium dodecyl sulfate polyacrylamide gel electrophoresis), two prominent enzyme forms, with molecular masses of 63 and 74 kDa, manifest themselves along with several minor, high molecular mass components (126-141 kDa). Non-denaturing exclusion chromatography shows that both major species are catalytically active, and suggests that each species is capable of participating in reversible monomer/dimer association. Wheat germ mutase is inhibited by time-dependent reactions involving either polydentate chelators or sulfhydryl reagents.  相似文献   

7.
The occurrence of multiple forms of rat prolactin with different molecular weights (size heterogeneity) was studied with anterior pituitary extracts, purified rat prolactin and 125I-labelled rat prolactin. In each case, three main forms of the hormone were detected by gel filtration on Sephadex G-100: a major one (80--90%) corresponding to monomeric prolactin (mol.wt. 22000--25000), a peak (8--20%) that could be a dimer (mol.wt. 45000--50000) and a small quantity (1--5%) of a component of much greater molecular weight. On freezing and thawing of 125I-labelled rat prolactin, there was little interconversion of monomer and 'dimer' peaks, but both were converted substantially to very high-molecular-weight material. All three peaks of 125I-labelled rat prolactin could be precipitated by anti-(rat prolactin) serum and all three gave similar patterns of radioactive peptides after digestion with chymotrypsin followed by high-voltage paper electrophoresis. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the monomer peak of 125I-labelled prolactin migrated as a single component of mol.wt. 22000, the very high-molecular-weight peak largely dissociated to a component running in the same position as the monomer, and the 'dimer' peak migrated partly as a component of mol.wt. 45000 and partly as a component migrating with monomeric prolactin. No treatment was found that could dissociate the 'dimer' peak completely to monomeric prolactin.  相似文献   

8.
G R Parr  G G Hammes 《Biochemistry》1976,15(4):857-862
The kinetics of dissociation and reassembly of rabbit skeletal muscle phosphofructokinase has been studied using fluorescence, stopped-flow fluorescence and enzyme activity measurements. The dissociation of the fully active tetramer in 0.8 M guanidine hydrochloride (0.1 M potassium phosphate, pH 8.0) occurs in three kinetic phases as measured by changes in the protein fluorescence emission intensity: dissociation of tetramer to dimer with a relaxation time of a few milliseconds; dissociation of dimer to monomer with a relaxation time of a few seconds; and a conformational change of the monomer with a relaxation time of a few minutes. All three phases exhibit first-order kinetics; ATP (0.05 mM) retards the second step but does not influence the rate of the other two processes. The rate of the second process increases with decreasing temperature; this may be due to the involvement of hydrophobic interactions in the stabilization of the dimeric enzyme. A further unfolding of the monomer polypeptide chain occurs at higher guanidine concentrations, and the relaxation time associated with this process was found to be 83 ms in 2.5 M guanidine, 0.1 M potassium phosphate (pH 8.0) at 23 degrees C. The phosphofructokinase monomers were reassembled from 0.8 M guanidine chloride by 1:10 dilution of the guanidine hydrochloride concentration and yielded a protein with 70-94% of the original activity, depending on the protein concentration. The reactivation process follows second-order kinetics; ATP (5 mM) increases the rate of reactivation without altering the reaction order, while fructose 6-phosphate does not influence the rate of reaction. The rate-determining step is probably the association of monomers to form the dimer.  相似文献   

9.
Stalled DNA replication forks can result in incompletely replicated genomes and cell death. DNA replication restart pathways have evolved to deal with repair of stalled forks and E. coli Rep helicase functions in this capacity. Rep and an accessory protein, PriC, assemble at a stalled replication fork to facilitate loading of other replication proteins. A Rep monomer is a rapid and processive single stranded (ss) DNA translocase but needs to be activated to function as a helicase. Activation of Rep in vitro requires self-assembly to form a dimer, removal of its auto-inhibitory 2B sub-domain, or interactions with an accessory protein. Rep helicase activity has been shown to be stimulated by PriC, although the mechanism of activation is not clear. Using stopped flow kinetics, analytical sedimentation and single molecule fluorescence methods, we show that a PriC dimer activates the Rep monomer helicase and can also stimulate the Rep dimer helicase. We show that PriC can self-assemble to form dimers and tetramers and that Rep and PriC interact in the absence of DNA. We further show that PriC serves as a Rep processivity factor, presumably co-translocating with Rep during DNA unwinding. Activation is specific for Rep since PriC does not activate the UvrD helicase. Interaction of PriC with the C-terminal acidic tip of the ssDNA binding protein, SSB, eliminates Rep activation by stabilizing the PriC monomer. This suggests a likely mechanism for Rep activation by PriC at a stalled replication fork.  相似文献   

10.
Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD(+) synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme's catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. In the absence of DMSO, the dimer behaves hydrodynamically as a single ideal species, as determined by equilibrium analytical ultracentrifugation, and thermally unfolds according to a two-state dissociative mechanism, based on analysis by differential scanning calorimetry (DSC). In the presence of 2.5% (v/v) DMSO, an equilibrium between the dimer and monomer is now detectable with a measured dimer association constant, K(a), equal to 5.6 x 10(6)/M. DSC curve analysis is consistent with this finding. The data are best fit to a three-state sequential unfolding mechanism, most likely representing folded dimer <==> folded monomer <==> unfolded monomer. The unusually large change in the relative stabilities of dimer and monomer, e.g., the association equilibrium shifts from an infinitely large K(a) down to approximately 10(6)/M, in the presence of relatively low cosolvent concentration is surprising in view of the significant buried surface area at the dimer interface, roughly 20% of the surface area of each monomer is buried. A hypothetical structural mechanism to explain this effect is presented.  相似文献   

11.
Factors affecting the oligomeric structure of yeast external invertase   总被引:4,自引:0,他引:4  
It has been assumed that yeast external invertase is a dimer, with each subunit composed of a 60-kDa polypeptide chain. We now present evidence that at its optimal pH of 5.0, the predominant form of external invertase is an octamer with an average size of 8 X 10(5) Da. During ultracentrifugation the octamer dissociated to lower molecular weight forms, including a hexamer, tetramer, and dimer. All forms of the enzyme were shown to possess identical specific activities and to contain a similar carbohydrate to protein ratio. Although the monomer subunits (1 X 10(5) Da) were heterogenous in carbohydrate content, each subunit possessed nine oligosaccharide chains. When stained for protein and enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only the oligomeric form of the enzyme appeared to be active. Thus, on partially inactivating invertase with 4 M guanidine hydrochloride both octamer and monomer were evident on the gels but only the former was active. Similarly, incubating at pH 2.5 in the presence of sodium dodecyl sulfate yielded only inactive monomer. The monomer, unlike the active oligomeric aggregate, was unable to hydrolyze sucrose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with the in vitro studies, freshly prepared yeast lysate was shown to contain the octameric species of external invertase as the major active form of this enzyme. From these studies and others which employed deglycosylated invertase, it is concluded that the carbohydrate component of external invertase contributes not only to stabilizing enzyme activity, but also to maintaining its oligomeric structure.  相似文献   

12.
13.
The coding region of copper/zinc-superoxide dismutase (Cu/Zn-SOD) cDNA from sweet potato, Ipomoea batatas (L.) Lam. cv. Tainong 57, was introduced into an expression vector, pET-20b(+). The Cu/Zn-SOD purified by His-tagged technique showed two active forms (dimer and monomer). The amount of proteins of dimer and monomer appeared to be equal, but the activity of dimeric form was seven times higher than that of monomeric form. The enzyme was dissociated into monomer by imidazole buffer above 1.0 M, acidic pH (below 3.0), or SDS (above 1%). The enzyme is quite stable. The enzyme activity is not affected at 85 °C for 20 min, in alkali pH 11.2, or in 0.1 M EDTA and also quite resistant to proteolytic attack. Dimer is more stable than monomer. The thermal inactivation rate constant k dcalculated for the monomer at 85 °C was 0.029 min-1 and the half-life for inactivation was about 28 min. In contrast, there is no significant change of dimer activity after 40 min at 85 °C. The enzyme dimer and monomer retained 83% and 58% of original activity, respectively, after 3 h incubation with trypsin at 37 °C, while those retained 100% and 31% of original activity with chymotrypsin under the same condition. These results suggest subunit interaction might change the enzyme conformation and greatly improve the catalytic activity and stability of the enzyme. It is also possible that the intersubunit contacts stabilize a particular optimal conformation of the protein or the dimeric structure enhances catalytic activity by increasing the electrostatic steering of substrate into the active site.  相似文献   

14.
Garai K  Frieden C 《Biochemistry》2010,49(44):9533-9541
The apolipoprotein E family consists of three major protein isoforms: apolipoprotein E4 (ApoE4), ApoE3, and ApoE2. The isoforms, which contain 299 residues, differ only by single-amino acid changes, but of the three, only ApoE4 is a risk factor for Alzheimer’s disease. At micromolar concentrations, lipid-free ApoE exists predominantly as tetramers. In more dilute solutions, lower-molecular mass species predominate. Using fluorescence correlation spectroscopy (FCS), intermolecular fluorescence resonance energy transfer (FRET), and sedimentation methods, we found that the association?dissociation reaction of ApoE can be modeled with a monomer?dimer?tetramer process. Equilibrium constants have been determined from the sedimentation data, while the individual rate constants for association and dissociation were determined by measurement of the kinetics of dissociation of ApoE and are in agreement with the equilibrium constants. Dissociation kinetics as measured by intermolecular FRET show two phases reflecting the dissociation of tetramer to dimer and of dimer to monomer, with dissociation from tetramer to dimer being more rapid than the dissociation from dimer to monomer. The rate constants differ for the different ApoE isoforms, showing that the association?dissociation process is isoform specific. Strikingly, the association rate constants are almost 2 orders of magnitude slower than expected for a diffusion-controlled process. Dissociation kinetics were also monitored by tryptophan fluorescence in the presence of acrylamide and the data found to be consistent with the monomer?dimer?tetramer model. The approach combining multiple methods establishes the reaction scheme of ApoE self-association.  相似文献   

15.
Lee JY  Yang ST  Lee SK  Jung HH  Shin SY  Hahm KS  Kim JI 《The FEBS journal》2008,275(15):3911-3920
The cathelicidin antimicrobial peptide bactenecin is a beta-hairpin molecule with a single disulfide bond and broad antimicrobial activity. The proform of bactenecin exists as a dimer, however, and it has been proposed that bactenecin is released as a dimer in vivo, although there has been little study of the dimeric form of bactenecin. To investigate the effect of bactenecin dimerization on its biological activity, we characterized the dimer's effect on phospholipid membranes, the kinetics of its bactericidal activity, and its salt sensitivity. We initially synthesized two bactenecin dimers (antiparallel and parallel) and two monomers (beta-hairpin and linear). Under oxidative folding conditions, reduced linear bactenecin preferentially folded into a dimer forming a ladder-like structure via intermolecular disulfide bonding. As compared to the monomer, the dimer had a greater ability to induce lysis of lipid bilayers and was more rapidly bactericidal. Interestingly, the dimer retained antimicrobial activity at physiological salt concentrations (150 mm NaCl), although the monomer was inactivated. This salt resistance was also seen with bactenecin dimer containing one intermolecular disulfide bond, and the bactenecin dimer appears to undergo multimeric oligomerization at high salt concentrations. Overall, dimeric bactenecin shows potent and rapid antimicrobial activity, and resists salt-induced inactivation under physiological conditions through condensation and oligomerization. These characteristics shed light on the features that a peptide would need to serve as an effective therapeutic agent.  相似文献   

16.
在前期研究中,已发现人瘦素(leptin)在体外再折叠过程中会形成稳定的二聚体,但其二聚化机制尚不清楚. 本研究旨在分析瘦素二聚体的结构特性,并重点研究体外再折叠过程中瘦素二聚化的机制. 相较与瘦素单体,瘦素二聚体保留了约75%免疫活性及15%受体结合活性,同时显示出明显慢的天然电泳迁移率. 圆二色性分析显示,二聚体基本保留了单体α螺旋索结构特征. 还原性及非还原性凝胶电泳分析和自由巯基测定结果表明,瘦素二聚体是由一对分子间二硫键连接2个单体而成的.为了确定瘦素二聚化过程中起主导作用的分子间二硫键,利用PCR定点突变技术构建了C96S和C146S两个突变体瘦素. 通过分析C96S及C146S突变体瘦素的体外再折叠特性及过程,并与野生型瘦素相比较,揭示C96S瘦素的二聚体显示出与野生型瘦素二聚体相似的特性,而C146S瘦素不能形成结构稳定的二聚体. 以上研究结果表明,Cys146-Cys146分子间二硫键在人瘦素二聚化过程中起主导作用.  相似文献   

17.
OXA-14 enzyme, a class D beta-lactamase, gave biphasic kinetics with all penicillin and cephalosporin substrates tested, such that the catalytic rate declined more swiftly than was explicable by substrate depletion. This biphasic behaviour was independent of temperature or extraneous protein but was lost if the enzyme was diluted to occupy almost the total assay volume before addition of a small amount of concentrated substrate. The presence of substrate could partially protect the enzyme against conversion to the less active form, with protection greatest at substrate concentration above the K(m). These observations are compatible with the hypothesis that the biphasic kinetics depended on the enzyme existing as a highly active dimer at high concentration and as a less active monomer at low concentration. Direct evidence supporting this hypothesis came from the observation that gel exclusion chromatography indicated a higher molecular weight for concentrated enzyme than for dilute. Biphasic kinetics are not so universal for different substrates amongst beta-lactamases (OXA-10, -11, -13, -16 and -17) that differ from OXA-14 by only one to two amino acid substitutions. It may be that the monomer:dimer equilibrium is more rapidly achieved with these enzymes than with OXA-14, or that the kinetic properties of the dimers and monomers of these enzymes are similar, masking any biphasic trait.  相似文献   

18.
C P Giri  M H West  M L Ramirez  M Smulson 《Biochemistry》1978,17(17):3501-3504
Definitive evidence for poly(ADP-Rib) polymerase activity is localized within internucleosomal "linker" regions of HeLa cell chromatin is presented. This evidence was based on the following criteria: the enzyme activity did not coincide with the position of core particles in a sucrose gradient but was displaced to that part of the gradient which is enriched in monomers with linker regions. This was not due to dimer contamination, since resedimentation did not affect the enzyme activity in relation to the monomer. A new method of assaying enzyme activity directly in polyacrylamide gels following the separation of monomers and dimers showed that only dimers and monomers with linker regions contained activity. When dimers were digested, the enzyme activity moved from the dimer to the monomer with linker.  相似文献   

19.
Abstract: Western blotting of rat dorsal root ganglion (DRG) and sciatic nerve under nonreducing conditions revealed that a peripherin-specific antibody recognized a protein species of 116/130 kDa, pi 5.6, in addition to peripherin (56 kDa, pl 5.6). We showed that this 116/130 kDa protein is a disulfide dimer of peripherin, because it gave rise to a single protein band comigrating with peripherin under reducing conditions and yielded the same proteolytic pattern as peripherin upon N-chlorosuccinimide digestion. In addition, the immunological characteristics of the resulting peptides were identical to those of peripherin. We investigated the changes in peripherin monomer and dimer protein levels during axonal development and regeneration. During postnatal development, quantitative analysis of western blots of DRG proteins showed a significant increase in peripherin monomer (+52%) and dimer (+33%) levels from the day of birth [postnatal day 0 (PO)] to P7. The monomer levels remained high until P14 and then decreased so that at P21 and later ages, the monomer levels were similar to those observed at birth. In contrast, the dimer levels decreased continuously after P7, and in the adult, its level represented only 30% of the level at birth. Changes in [35S]methionine incorporation into adult DRG proteins were studied during regeneration of axotomized sciatic axons. Quantitative analysis of proteins showed a strong increase in labeling of both peripherin monomer (+56%) and dimer (+88%) 7 days after the crush. These levels, which remained high until 28 days after the axotomy, had returned to normal 70 days post axotomy. Our results show that peripherin monomer and dimer greatly increase during DRG fiber development and regeneration, suggesting that the two forms are involved in the growth of axons.  相似文献   

20.
A facile method for the formation of covalent bonds between protein molecules is zero-length cross-linking. This method enables the formation of cross-links without use of any chemical reagents. Here, the cross-linking is performed for lysozyme, peroxidase (a glycoprotein) and between lysozyme–peroxidase by the method of Simons et al. [B.L. Simons, M.C. King, T. Cyr, M.A. Hefford, H. Kaplan, Covalent cross-linking of protein without chemical reagents, Protein Sci. 2002, 11, 1558–1564]. Approximately one-third of the total lysozyme becomes cross-linked and the dimer form was the major product for both enzymes. This modification induced some changes in the kinetic properties of the dimer peroxidase, as evident by two-fold increasing of Vmax compared to the monomer but the enzymatic activity of cross-linked lysozyme dimer was the same as monomer. The activity of lysozyme dimer remained constant up to 10 min at 80 °C, while peroxidase activity of both monomer and dimer began to decrease after heating. The structural changes of the enzymes were investigated by circular dichroism and intrinsic fluorescence techniques. Near UV result showed lysozyme possess a compact structure in the dimer form but disruption of tertiary structure of peroxidase dimer was observed. Also conformational changes were detected and discussed by intrinsic fluorescence experiments. Effect of several metals in the formation of lysozyme dimer showed that Co2+ is the most effective one but its effect was marginal. At the end formation of heterogeneous dimer, peroxidase–lysozyme, was achieved using this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号