首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex determination in the honeybee   总被引:4,自引:0,他引:4  
Charlesworth B 《Cell》2003,114(4):397-398
Sex determination in honeybees involves a multi-allelic locus, such that homozygotes develop as males and heterozygotes as females. In this issue of Cell, report the cloning of the sex-determining gene, csd. It codes for an SR protein, and different alleles have very different amino-acid sequences. Inactivating csd leads to development as a male.  相似文献   

2.
Wu Z  Hopper KR  Ode PJ  Fuester RW  Tuda M  Heimpel GE 《Heredity》2005,95(3):228-234
In the haplodiploid Hymenoptera, haploid males arise from unfertilized eggs, receiving a single set of maternal chromosomes while diploid females arise from fertilized eggs and receive both maternal and paternal chromosomes. Under single-locus complementary sex determination (sl-CSD), sex is determined by multiple alleles at a single locus. Sex locus heterozygotes develop as females, while hemizygous and homozygous eggs develop as haploid and diploid males, respectively. Diploid males, which are inviable or sterile in almost all cases studied, are therefore produced in high frequency under inbreeding or in populations with low sex allele diversity. CSD is considered to be the ancestral form of sex determination within the Hymenoptera because members of the most basal taxa have CSD while some of the more derived groups have other mechanisms of sex determination that produce the haplo-diploid pattern without penalizing inbreeding. In this study, we investigated sex determination in Heterospilus prosopidis Viereck, a parasitoid from a relatively primitive subfamily of the Braconidae, a hymenopteran family having species with and without CSD. By comparing sex ratio and mortality patterns produced by inbred and outbred females, we were able to rule out sl-CSD as a sex determination mechanism in this species. The absence of sl-CSD in H. prosopidis was unexpected given its basal phylogenetic position in the Braconidae. This and other recent studies suggest that sex determination systems in the Hymenoptera may be evolutionary labile.  相似文献   

3.
Hymenopteran insects (sawflies, ants, bees, and wasps) have an unusual genetic system called haplodiploidy, where parthenogenetically produced haploid eggs become males, and fertilized, diploid eggs become females. Several hypotheses have been proposed to explain the mechanism of such sex determination, including control at a single polymorphic locus. From experiments of mother-son mating and using a genetic marker, we show that a single multiallele locus controls sex determination in the turnip sawfly (Athalia rosae). We estimated the number of alleles at this single locus in a field population by analyzing the rate of diploid males in the field and the rate of diploid males by random crossing in the laboratory. Only one diploid male was discovered in 1306 diploid larvae collected in the field. However, the number of alleles calculated by random crossing in the laboratory was 45-50. We suggest that the effective population size may be much larger than that from the areas where we collected larvae, and that there are mechanisms for avoiding inbreeding, including protogyny, dispersion, and sperm displacement by second-mated males.  相似文献   

4.
Perhaps 20% of known animal species are haplodiploid: unfertilized haploid eggs develop into males and fertilized diploid eggs into females. Sex determination in such haplodiploid species does not rely on a difference in heteromorphic sex chromosome composition but the genetic basis has been elucidated in some hymenopteran insects (wasps, sawflies, ants, bees). In these species, the development into one sex or the others depends on an initial signal whether there is only one allele or two different alleles of a single gene, the complementary sex determiner (csd), in the zygotic genome. The gene has been most-recently identified in the honey bee and has been found to encode an arginine serine-rich (SR) type protein. Heterozygosity generates an active protein that initiates female development while hemizygosity/homozygosity results in a non-active CSD protein and default male development. I will discuss plausible models of how the molecular decision of male and female is made and implemented. Comparison to hierarchies of dipteran insects suggests that SR-type protein has facilitated the differentiation of sex-determining systems and hierarchies.  相似文献   

5.
膜翅目昆虫单双倍体性别决定机制(雄性是单倍体、雌性是二倍体)在昆虫纲的进化中有非常重要的作用。通常膜翅目昆虫的性别由单一位点的等位基因决定,杂合体发育成雌性,半合体发育成雄性。在近亲繁殖的情况下,一定数目的雄性会出现纯合二倍体,由于遗传阻隔这种二倍体的雄性通常是不育的。csd基因的发现为膜翅目昆虫性别决定机制提供了分子生物学证据。文章探讨CSD的分子生物学基础,对膜翅目昆虫sl-CSD的分布进行综述并且探讨膜翅目昆虫降低二倍体雄性消耗的策略以及可能存在的进化机制,最后提出几点建议以便从遗传学、生态学以及进化生物学角度全面的了解sl-CSD。  相似文献   

6.
Abstract In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are heterozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hymenopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.  相似文献   

7.
在膜翅目中 ,未受精卵形成单倍体的雄蜂 ,而在大多数情况下受精卵将产生双倍体的雌蜂。但是 ,因互补性别决定机制 (CSD)的作用 ,受精卵有时也会产生双倍体雄蜂。这种性别决定机制包括单位点的CSD和多位点的CSD。在单位点的CSD作用下 ,唯一的一个性位点上的多个等位基因决定后代个体的性别。性位点上杂合的个体将是雌性 ,半合或同型结合的个体将分别形成单倍体或双倍体的雄性。在多位点的CSD作用下 ,两个或两个以上的性位点控制后代的性别 ,每个性位点上包含两个或两个以上的等位基因。如果一个或一个以上的性位点是杂合的 ,形成的双倍体后代都是雌性的 ,但若是所有的性位点都为同型合子 ,则将产生双倍体的雄蜂。在膜翅目中 ,目前已知 4 3种具有双倍体雄蜂 ,其中 2 2种发现存在单位点的CSD ,但是多位点的CSD还有待于确认。双倍体的雄性个体或者不能存活 ,或者不育 ,这样的个体形成将对寄生蜂种群的增长带来一定的遗传负担。在生物防治上 ,保护寄生蜂种群的性等位基因的多样性及减少其遗传多异性的损失极其重要。如果利用具有单位点CSD的种类 ,采取一定的措施将可避免由于双倍体雄性的形成所带来的负面影响。  相似文献   

8.
Trent C  Crosby C  Eavey J 《Heredity》2006,96(5):368-376
The primary sex-determining signal in the haplodiploid wasp Nasonia vitripennis is not known. In haplodiploid reproduction, unfertilized eggs typically develop into uniparental haploid males and fertilized eggs into biparental diploid females. Although this reproductive strategy is common to all Hymenoptera, sex-determination is not strictly specified by the number of genome copies inherited. Furthermore, primary sex-determining signals differ among haplodiploid species. In the honeybee, for example, the primary signal is the genotype at a single, polymorphic locus: diploid animals that are homozygous develop into males while heterozygotes develop into females. Sex determination in Nasonia cannot be explained by this mechanism. Various lines of evidence show that the inheritance of a paternal genome is required for female sexual development and suggest a genomic imprinting mechanism involving an imprinted gene, expressed only from a paternal copy, that triggers female sexual development. In this model, haploid or diploid uniparental embryos develop into males due to a maternal imprint that silences this locus. The genomic imprinting model predicts that a loss-of-function mutation in the paternal copy of the imprinted gene would result in male sexual development in a biparental diploid embryo. In support of this model, we have identified rare biparental diploid males in the F1 progeny of X-ray mutagenized haploid males. Although uniparental diploid male progeny of virgin triploid females have been previously described, this is the first report of biparental diploid males in Nasonia. Our work provides a new, independent line of evidence for the genomic imprinting model of Nasonia sex determination.  相似文献   

9.
Pre-ovulation control of hatchling sex ratio in the Seychelles warbler   总被引:13,自引:0,他引:13  
Females of some bird species have a high degree of control over the sex ratio of their offspring at laying. Although several mechanisms have been put forward to explain how females might control the sex of their eggs, virtually nothing is known. As females are the heterogametic sex in birds, adjustment of the clutch sex ratio could arise either by pre- or post-ovulation control mechanisms. The Seychelles warbler (Acrocephalus sechellensis) exhibits extreme adaptive egg sex ratio bias. Typically, warblers produce only single-egg clutches, but by translocating pairs to vacant habitat of very high quality, most females were induced to produce two-egg clutches. Overall, females skewed clutch sex ratios strongly towards daughters (86.6%). This bias was evident in the first egg, but critically, also in the second eggs laid a day apart, even when all absent, unhatched, or unsexed second eggs were assumed to be male. Although a bias in the first egg may arise through either pre- or post-ovulation mechanisms, the skew observed in second eggs could only arise through pre-ovulation control. Post-ovulation adjustment may also contribute to skewed hatchling sex ratios, but as sex-biased release of gametes is likely to be a more efficient process of control, pre-ovulation mechanisms may be the sole means of adjustment in this species. High fitness differentials between sons and daughters, as apparent in the Seychelles warblers, may be necessary for primary sex ratio adjustment to evolve.  相似文献   

10.
The hallmark of eusociality is the division of labour between reproductive (queen) and nonreproductive (worker) females. Yet in many eusocial insects, workers retain the ability to produce haploid male offspring from unfertilized eggs. The reproductive potential of workers has well‐documented consequences for the structure and function of insect colonies, but its implications at the population level are less often considered. We show that worker reproduction in honey bees can have an important role in maintaining genetic diversity at the sex locus in invasive populations. The honey bee sex locus is homozygous‐lethal, and, all else being equal, a higher allele number in the population lead to higher mean brood survival. In an invasive population of the honey bee Apis cerana in Australia, workers contribute significantly to male production: 38% of male‐producing colonies are queenless, and these contribute one‐third of all males at mating congregations. Using a model, we show that such male production by queenless workers will increase the number of sex alleles retained in nascent invasive populations following founder events, relative to a scenario in which only queens reproduce. We conclude that by rescuing sex locus diversity that would otherwise be lost, workers' sons help honey bee populations to minimize the negative effects of inbreeding after founder events and so contribute to their success as invaders.  相似文献   

11.
We report perhaps the first genic-level molecular documentation of a mammalian-like 'X-linked' mode of sex determination in molluscs. From family inheritance data and observed associations between sex-phenotyped adults and genotypes in Busycon carica, we deduce that a polymorphic microsatellite locus (bc2.2) is diploid and usually heterozygous in females, hemizygous in males, and that its alleles are transmitted from mothers to sons and daughters but from fathers to daughters only. We also employ bc2.2 to estimate near-conception sex ratio in whelk embryos, where gender is indeterminable by visual inspection. Statistical corrections are suggested at both family and population levels to accommodate the presence of homozygous bc2.2 females that could otherwise be genetically mistaken for hemizygous males. Knobbed whelks were thought to be sequential hermaphrodites, but our evidence for genetic dioecy supports an earlier hypothesis that whelks are pseudohermaphroditic (falsely appear to switch functional sex when environmental conditions induce changes in sexual phenotype). These findings highlight the distinction between gender in a genetic versus phenotypic sense.  相似文献   

12.
Temperature effects on ectotherms are widely studied particularly in insects. However, the life-history effects of temperature experienced during a window of embryonic development, that is egg stage, have rarely been considered. We simulated fluctuating temperatures and examined how this affects the operational sex ratio (OSR) of hatching as well as nymph and adult fitness in a leafhopper, Scaphoideus titanus. Specifically, after a warm or cold incubation we compared males and females hatching dynamics with their consequences on the sex ratio in the course of time, body size, weight, and developmental rate of the two populations, all reared on the same posthatching temperature. Males and females eggs respond differently, with females more sensitive to variation in incubation temperature. The different responses of both sexes have consequences on the sex ratio dynamic of hatchings with a weaker protandry after warm incubation. Temperatures experienced by eggs have more complex consequences on posthatching development. Later nymphal instars that hatched from eggs exposed to warm temperature were larger and bigger but developmental rate of the two populations was not affected. Our study demonstrates how incubation temperature could affect operational sex ratio and posthatching development in an insect and how this may be critical for population growth.  相似文献   

13.
Kamping A  Katju V  Beukeboom LW  Werren JH 《Genetics》2007,175(3):1321-1333
The parasitic wasp Nasonia vitripennis has haplo-diploid sex determination. Males develop from unfertilized eggs and are haploid, whereas females develop from fertilized eggs and are diploid. Females and males can be easily distinguished by their morphology. A strain that produces individuals with both male and female features (gynandromorphs) is studied. We provide data on female/male patterning within and between individuals, on environmental effects influencing the occurrence of gynandromorphism, and on its pattern of inheritance. A clear anterior/posterior pattern of feminization is evident in gynandromorphic individuals that developed from unfertilized haploid eggs. The proportion of gynandromorphic individuals can be increased by exposing the mothers to high temperature and also by exposing embryos at early stages of development. Selection for increased gynandromorph frequency was successful. Backcross and introgression experiments showed that a combination of a nuclear and a heritable cytoplasmic component causes gynandromorphism. Analyses of reciprocal F(2) and F(3) progeny indicate a maternal effect locus (gyn1) that maps to chromosome IV. Coupled with previous studies, our results are consistent with a N. vitripennis sex determination involving a maternal/zygotic balance system and/or maternal imprinting. Genetics and temperature effects suggest a temperature-sensitive mutation of a maternally produced masculinizing product that acts during a critical period in early embryogenesis.  相似文献   

14.
Sex in many species of Hymenoptera (ants, bees and wasps) is determined by a single locus that is heterozygous in females and hemizygous in (haploid) males. Beye and colleagues have now cloned the csd locus in the honeybee Apis mellifera and provide functional evidence that this gene is the primary switch in the sex-determination cascade of honeybees and possibly all Hymenoptera.  相似文献   

15.
The haplodiploid sex determining system in Hymenoptera, whereby males develop from haploid eggs and females from diploid eggs, allows females to control the primary sex ratio (the proportion of each sex at oviposition) in response to ecological and/or genetic conditions. Surprisingly, primary sex ratio adjustment by queens in eusocial Hymenoptera has been poorly studied, because of difficulties in sexing the eggs laid. Here, we show that fluorescence in situ hybridization (FISH) can be used to accurately determine the sex (haploid or diploid) of eggs, and hence the primary sex ratio, in ants. We first isolated the homologue coding sequences of the abdominal-A gene from 10 species of 8 subfamilies of Formicidae. Our data show that the nucleotide sequence of this gene is highly conserved among the different subfamilies. Second, we used a sequence of 4.5 kbp from this gene as a DNA probe for primary sex ratio determination by FISH. Our results show that this DNA probe hybridizes successfully with its complementary DNA sequence in all ant species tested, and allows reliable determination of the sex of eggs. Our proposed method should greatly facilitate empirical tests of primary sex ratio in ants.  相似文献   

16.
Our understanding of the impact of recombination, mutation, genetic drift, and selection on the evolution of a single gene is still limited. Here we investigate the impact of all these evolutionary forces at the complementary sex determiner (csd) gene that evolves under a balancing mode of selection. Females are heterozygous at the csd gene and males are hemizygous; diploid males are lethal and occur when csd is homozygous. Rare alleles thus have a selective advantage, are seldom lost by the effect of genetic drift, and are maintained over extended periods of time when compared with neutral polymorphisms. Here, we report on the analysis of 17, 19, and 15 csd alleles of Apis cerana, Apis dorsata, and Apis mellifera honeybees, respectively. We observed great heterogeneity of synonymous (piS) and nonsynonymous (piN) polymorphisms across the gene, with a consistent peak in exons 6 and 7. We propose that exons 6 and 7 encode the potential specifying domain (csd-PSD) that has accumulated elevated nucleotide polymorphisms over time by balancing selection. We observed no direct evidence that balancing selection favors the accumulation of nonsynonymous changes at csd-PSD (piN/piS ratios are all <1, ranging from 0.6 to 0.95). We observed an excess of shared nonsynonymous changes, which suggest that strong evolutionary constraints are operating at csd-PSD resulting in the independent accumulation of the same nonsynonymous changes in different alleles across species (convergent evolution). Analysis of csd-PSD genealogy revealed relatively short average coalescence times ( approximately 6 Myr), low average synonymous nucleotide diversity (piS < 0.09), and a lack of trans-specific alleles that substantially contrasts with previously analyzed loci under strong balancing selection. We excluded the possibility of a burst of diversification after population bottlenecking and intragenic recombination as explanatory factors, leaving high turnover rates as the explanation for this observation. By comparing observed allele richness and average coalescence times with a simplified model of csd-coalescence, we found that small long-term population sizes (i.e., N(e) < 10(4)), but not high mutation rates, can explain short maintenance times, implicating a strong historical impact of genetic drift on the molecular evolution of highly social honeybees.  相似文献   

17.
Two laboratory experiments investigated mate guarding and sperm allocation patterns of adult males with virgin females of the snow crab, Chionoecetes opilio, in relation to sex ratio. Although females outnumbered males in treatments, operational sex ratios were male-biased because females mature asynchronously and have a limited period of sexual attractiveness after their maturity molt. Males guarded females significantly longer as the sex ratio increased: the mean time per female was 2.9 d in a 2 males:20 females treatment compared to 5.6 d in a 6 males:20 females treatment. Female injury and mortality scaled positively to sex ratio. Males that guarded for the greatest number of days were significantly larger, and at experiment's end had significantly smaller vasa deferentia, suggesting greater sperm expense, than males that guarded for fewer days. In both experiments, the spermathecal load (SL)--that is, the quantity of ejaculate stored in a female's spermatheca--was independent of molt date, except in the most female-biased treatment, where it was negatively related. The SL increased as the sex ratio increased, mainly because females accumulated more ejaculates. However, similarly sized males had smaller vasa deferentia and passed smaller ejaculates, such that, at a given sex ratio, the mean SL was 55% less in one experiment than in the other. Some females extruded clutches with few or no fertilized eggs, and their median SL (3-4 mg) was one order of magnitude smaller than that of females with well-fertilized clutches (31-50 mg), indicating sperm limitation. Males economized sperm: all females irrespective of sex ratio were inseminated, but to a varying extent submaximally; each ejaculate represented less than 2.5% of male sperm reserves; and no male was fully exhausted of sperm. Sperm economy is predicted by sperm competition theory for species like snow crab in which polyandry exists, mechanisms of last-male sperm precedence are effective, and the probability that one male fertilizes a female's lifetime production of eggs is small.  相似文献   

18.
In diverse animal species, from insects to mammals, females display a more efficient immune defence than males. Bateman's principle posits that males maximize their fitness by increasing mating frequency whereas females gain fitness benefits by maximizing their lifespan. As a longer lifespan requires a more efficient immune system, these implications of Bateman's principle may explain widespread immune dimorphism among animals. Because in most extant animals, the provisioning of eggs and a higher parental investment are attributes of the female sex, sex-role reversed species provide a unique opportunity to assess whether or not immune dimorphism depends on life history and not on sex per se. In the broad-nosed pipefish Syngnathus typhle, males brood and nourish the eggs in a ventral pouch and thus invest more into reproduction than females. We found males to have a more active immune response both in field data from four populations and also in an experiment under controlled laboratory conditions. This applied to different measures of immunocompetence using innate as well as adaptive immune system traits. We further determined the specificity of immune response initiation after a fully factorial primary and secondary exposure to a common marine pathogen Vibrio spp. Males not only had a more active but also a more specific immune defence than females. Our results thus indeed suggest that the sex that invests more into the offspring has the stronger immune defence.  相似文献   

19.
The reproductive strategies and variation in reproductive success of ticks are poorly understood. We determined variation in multiple paternity in the American dog tick Dermancentor variabilis . In total, 48 blood-engorged female ticks and 22 male companion ticks were collected from 13 raccoon ( Procyon lotor ) hosts. In the laboratory, 56.3% of blood-engorged females laid eggs, of which 37.0% hatched or showed signs of development. We examined the presence of multiple paternity in the ensuing clutches by genotyping groups of eggs and larvae at 5 microsatellite loci and subtracting the known maternal alleles, thereby identifying male-contributed alleles. Seventy-five percent of the clutches presented multiple paternity, with a mode of 2 fathers siring the clutch. Males associated with the females on the host always sired some offspring. In 1 case, a male was the sire of clutches derived from 2 females, indicating both polygyny and polyandry may occur for this species. These results, combined with those of several other recent studies, suggest that multiple paternity might be frequent for ixodid ticks.  相似文献   

20.
Beye M  Hunt GJ  Page RE  Fondrk MK  Grohmann L  Moritz RF 《Genetics》1999,153(4):1701-1708
Sex determination in Hymenoptera is controlled by haplo-diploidy in which unfertilized eggs develop into fertile haploid males. A single sex determination locus with several complementary alleles was proposed for Hymenoptera [so-called complementary sex determination (CSD)]. Heterozygotes at the sex determination locus are normal, fertile females, whereas diploid zygotes that are homozygous develop into sterile males. This results in a strong heterozygote advantage, and the sex locus exhibits extreme polymorphism maintained by overdominant selection. We characterized the sex-determining region by genetic linkage and physical mapping analyses. Detailed linkage and physical mapping studies showed that the recombination rate is <44 kb/cM in the sex-determining region. Comparing genetic map distance along the linkage group III in three crosses revealed a large marker gap in the sex-determining region, suggesting that the recombination rate is high. We suggest that a "hotspot" for recombination has resulted here because of selection for combining favorable genotypes, and perhaps as a result of selection against deleterious mutations. The mapping data, based on long-range restriction mapping, suggest that the Q DNA-marker is within 20,000 bp of the sex locus, which should accelerate molecular analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号