首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is commonly argued that sexual size dimorphism (SSD) in lizards has evolved in response to two primary, nonexclusive processes: (1) sexual selection for large male size, which confers an advantage in intrasexual mate competition (intrasexual selection hypothesis), and (2) natural selection for large female size, which confers a fecundity advantage (fecundity advantage hypothesis). However, outside of several well-studied lizard genera, the empirical support for these hypotheses has not been examined with appropriate phylogenetic control. We conducted a comparative phylogenetic analysis to test these hypotheses using literature data from 497 lizard populations representing 302 species and 18 families. As predicted by the intrasexual selection hypothesis, male aggression and territoriality are correlated with SSD, but evolutionary shifts in these categorical variables each explain less than 2% of the inferred evolutionary change in SSD. We found stronger correlations between SSD and continuous estimates of intrasexual selection such as male to female home range ratio and female home range size. These results are consistent with the criticism that categorical variables may obscure much of the actual variation in intrasexual selection intensity needed to explain patterns in SSD. In accordance with the fecundity advantage hypothesis, SSD is correlated with clutch size, reproductive frequency, and reproductive mode (but not fecundity slope, reduced major axis estimator of fecundity slope, length of reproductive season, or latitude). However, evolutionary shifts in clutch size explain less than 8% of the associated change in SSD, which also varies significantly in the absence of evolutionary shifts in reproductive frequency and mode. A multiple regression model retained territoriality and clutch size as significant predictors of SSD, but only 16% of the variation in SSD is explained using these variables. Intrasexual selection for large male size and fecundity selection for large female size have undoubtedly helped to shape patterns of SSD across lizards, but the comparative data at present provide only weak support for these hypotheses as general explanations for SSD in this group. Future work would benefit from the consideration of alternatives to these traditional evolutionary hypotheses, and the elucidation of proximate mechanisms influencing growth and SSD within populations.  相似文献   

2.
Y. Scholtz  E. Pretorius 《HOMO》2010,61(4):253-270
Sex determination is vital when attempting to establish identity from skeletal remains. Two approaches to sex determination exists: morphological and metrical. The aim of this paper was to use geometric morphometrics to study the shape of the scapula and its sexual dimorphism.The sample comprised 45 adult black male and 45 adult black female scapulae of known sex. The scapulae were photographed and 21 homologous landmarks were plotted to use for geometric morphometric analysis with the ‘tps’ series of programs, as well as the IMP package. Consensus thin-plate splines and vector plots for males and females were compared. The CVA and TwoGroup analyses indicated that significant differences exist between males and females. The lateral and medial borders of females are straighter while the supraspinous fossa is more convexly curved than that of males. More than 91% of the females and 95% of the males were correctly assigned. Hotelling's T2-test yielded a significant p-value of 0.00039. In addition, 100 equidistant landmarks representing the curve only were also assigned. These, however, yielded considerably poorer results. It is concluded that it is better to use homologous landmarks rather than curve data only, as it is most probable that the shape of the outline relative to the fixed homologous points on the scapula is sexually dimorphic.  相似文献   

3.
4.
Sexual dimorphism is discussed as a diffusion problem. The establishment of different gametic size is favoured through Brownian motion.  相似文献   

5.
Sexual dimorphism in primate species expresses the effects of phylogeny, life history, behavior, and ontogeny. The causes and implications of sexual dimorphism have been studied in several different primates using a variety of morphological databases such as body weight, canine length, and coat color and ornamentation. In addition to these different patterns of dimorphism, the degree to which a species is dimorphic results from a variety of possible causes. In this study we test the general hypothesis that a species highly dimorphic for one size-based index of dimorphism will be equally dimorphic (relative to other species) for other size-based indices. Specifically, the degree and pattern of sexual dimorphism in Cebus and several other New World monkey species is measured using craniometric data as a substitute for the troublesome range of variation in body weight estimates. In general, the rank ordering of species for dimorphism ratios differs considerably across neural vs. non-neural functional domains of the cranium. The relative degree of sexual dimorphism in different functional regions of the cranium is affected by the independent action of natural selection on those regions. Regions of the cranium upon which natural selection is presumed to have acted within a species show greater degrees of dimorphism than do the same regions in closely related taxa. Within Cebus, C. apella is consistently more dimorphic than other Cebus species for facial measurements, but not for neural or body weight measurements. The pattern in C. apella indicates no single best measurement of the degree of dimorphism in a species; rather, the relative degree of dimorphism applies only to the region being measured and may be enhanced by other selective pressures on morphology. Am J Phys Anthropol 107:243–256, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Sexual differences are often dramatic and widespread across taxa. Their extravagance and ubiquity can be puzzling because the common underlying genome of males and females is expected to impede rather than foster phenotypic divergence. Widespread dimorphism, despite a shared genome, may be more readily explained by considering the multivariate, rather than univariate, framework governing the evolution of sexual dimorphism. In the univariate formulation, differences in genetic variances and a low intersexual genetic correlation () can facilitate the evolution of sexual dimorphism. However, studies that have analysed sex‐specific differences in heritabilities or genetic variances do not always find significant differences. Furthermore, many of the reported estimates of are very high and positive. When monomorphic heritabilities and a high are present together, the evolution of sexual dimorphism on a trait‐by‐trait basis is severely constrained. By contrast, the multivariate formulation has greater generality and more flexibility. Although the number of multivariate sexual dimorphism studies is low, almost all support sex‐specific differences in the G (variance‐covariance) matrix; G matrices can differ with respect to size and/or orientation, affecting the response to selection differently between the sexes. Second, whereas positive values of the univariate quantity only hinder positive changes in sexual dimorphism, positive covariances in the intersexual covariance B matrix can either help or hinder. Similarly, the handful of studies reporting B matrices indicate that it is often asymmetric, so that B can affect the evolution of single traits differently between the sexes. Multivariate approaches typically demonstrate that genetic covariances among traits can strongly constrain trait evolution when compared with univariate approaches. By contrast, in the evolution of sexual dimorphism, a multivariate view potentially reveals more opportunities for sexual dimorphism to evolve by considering the effect sex‐specific selection has on sex‐specific G matrices and an asymmetric B matrix.  相似文献   

7.
Understanding sexual dimorphism is very important in studies of human evolution and skeletal biology. Sexual dimorphic characteristics can be studied morphologically and metrically, although morphologic studies pose several problems such as difficulties with quantification and interobserver error. Geometric morphometrics is a relatively new method that allows better assessment of morphologic characteristics. This paper aims to investigate the usability of this method by assessing three different morphologic characteristics in a sample of South African blacks: shape of the greater sciatic notch, mandibular ramus flexure, and shape of the orbits. Relative warps, thin-plate splines, and canonical variates analysis (CVA) analyses were performed. As expected, the shape of the greater sciatic notch provided the best separation between the sexes. Surprisingly, however, the shape of the orbits performed better that ramus flexure. Several possible explanations for this result are possible, which include the possibility that orbit shape is more sexually dimorphic than previously expected, or that biological reality is not reflected by this technique. More research is, however, needed.  相似文献   

8.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

9.
Applied to skin color, the sexual selection hypothesis proposes that male preference for light-skinned females explains the presence of light skin in areas of low solar radiation. According to this proposal, in areas of high solar radiation, natural selection for dark skin overrides the universal preference of males for light females. But in areas in which natural selection ceases to act, sexual selection becomes more important, and causes human populations to become light-skinned, and females to be lighter than males. The sexual selection hypothesis proposes that human sexual dimorphism of skin color should be positively correlated with distance from the equator. We tested the prediction that sexual dimorphism should increase with increasing latitude, using adult-only data sets derived from measurements with standard reflectance spectrophotometric devices. Our analysis failed to support the prediction of a positive correlation between increasing distance from the equator and increased sexual dimorphism. We found no evidence in support of the sexual selection hypothesis.  相似文献   

10.
11.
12.
Whether human fetal skeletal remains exhibit sexual dimorphism has been the subject of considerable debate. Most attention in this debate has focused on the greater sciatic notch of the ilium, since it is a gross morphological characteristic with known sex differences in the adult and is easily seen in fetal skeletal remains. Unfortunately, previous traditional morphometric analyses of the fetal sciatic notch have led to ambiguous results. The purpose of this study is to determine whether differences between the sexes can be discerned when modern morphometric techniques are applied to the fetal sciatic notch. Photographs of the ventral side of 133 fetal ilia of known age and sex from the Trotter Collection of Washington University were digitized, and the trace coordinates used for all subsequent analyses. The results of the analysis demonstrate that there is significant sexual dimorphism in the anterior to posterior location of the maximum depth of the sciatic notch, but that the depth of the notch itself is not dimorphic. While there is significant sexual dimorphism in the shape of the sciatic notch, the amount of overlap between males and females is too great for the sciatic notch to be used as a reliable indicator of sex. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Rensch's rule states that degree of sexual dimorphism increases with body size in species with larger males, and decreases with body size in those with larger females. To test this rule, we assessed the pattern of sexual size dimorphism in tinamous using a comparative analysis of independent contrasts. Tinamous are a monophyletic group of primitive birds comprising at least 47 ground dwelling species with prominent or exclusive paternal care of eggs and offspring. Although the size of females exceeded that of males in most considered species, we found an isometric relationship between males and females, instead of the negative allometric one predicted by Rensch's rule. Previous studies in Strigiformes and Falconiformes found positive allometric and isometric relationships respectively, and, considering these findings with our results, we conclude that Rensch's rule is not supported by birds with exclusively female-biased sexual dimorphism in size.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 519–527  相似文献   

14.
15.
16.
17.
The degree of sexual dimorphism in human populations is influenced by stress, social role and by labour division. However, studies on ethnographic populations provided contradictory results. Unfortunately, most of these studies were based on stature only, which, as we could observe in a survey on pre-protohistoric circum-Medirerranean samples, is a poor indicator of functionally related dimorphism. A number of skeletal measurements were examined: skull, stature, transverse trunk diameters, long bones length, circumference and section, in order to assess their usefulness as indicators of functionally related dimorphism. The best indicators were represented by section and circumference of the long bones of the limbs, followed by cross-shoulder breadth (biclavicular length), stature and limb bone length, facial measurements, cranial measurements and sacral breadth. From the methodological point of view, it was found that:
  1. It is better to calculate the index of dimorphism for each trait or set of traits within each sample. Then a weighted average of all the available samples is taken. The index derived from pooling a number of samples does not make biological sense. In pooled samples the distinction of between versus within sample differences is obscured;
  2. It is better to combine an index which is based on the difference between averages and one which takes variability into account, because variability can also be an aspect of sexual dimorphism;
  3. It is better to apply some allometric correction to the measurements used. For instance, the log transformation produces clearer trends of differential dimorphism among the various traits.
  相似文献   

18.
11 , Evolution 34 : 292–305) equations for predicting the evolution of sexual size dimorphism (SSD) through frequency‐dependent sexual selection, and frequency‐independent natural selection, were tested against results obtained from a stochastic genetic simulation model. The SSD evolved faster than predicted, due to temporary increases in the genetic variance brought about by directional selection. Predictions for the magnitude of SSD at equilibrium were very accurate for weak sexual selection. With stronger sexual selection the total response was greater than predicted. Large changes in SSD can occur without significant long‐term change in the genetic correlation between the sexes. Our results suggest that genetic correlations constrain both the short‐term and long‐term evolution of SSD less than predicted by the Lande model.  相似文献   

19.
A comparative study of the fatty acids of some micrococci   总被引:3,自引:0,他引:3  
  相似文献   

20.
Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life‐history allocation trade‐offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号