首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Menkes copper-translocating P-type ATPase (ATP7A; MNK) is a ubiquitous protein that regulates the absorption of copper in the gastrointestinal tract. Inside cells the protein has a dual function: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper. The latter property is achieved through copper-dependent vesicular trafficking of the Menkes protein to the plasma membrane of the cell. The trafficking mechanism and catalytic activity combine to facilitate absorption and intercellular transport of copper. The mechanism of catalysis and copper-dependent trafficking of the Menkes protein are the subjects of this review. Menkes disease, a systemic copper deficiency disorder, is caused by mutations in the gene encoding the Menkes protein. The effect of these mutations on the catalytic cycle and the cell biology of the Menkes protein, as well as predictions of the effect of particular mutant MNKs on observed Menkes disease symptoms will also be discussed.  相似文献   

2.

Background  

The rapid burgeoning of available protein data makes the use of clustering within families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily related sequences. This identification reveals phylogenetic relationships, which provide prior knowledge to help researchers understand biological phenomena. A good evolutionary model is essential to achieve a clustering that reflects the biological reality, and an accurate estimate of protein sequence similarity is crucial to the building of such a model. Most existing algorithms estimate this similarity using techniques that are not necessarily biologically plausible, especially for hard-to-align sequences such as proteins with different domain structures, which cause many difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity measure based on matching amino acid subsequences. This measure, named SMS for Substitution Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences. Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein families. In the rest of the paper, we use the term "phylogenetic" in the sense of "relatedness of biological functions".  相似文献   

3.
4.
The Menkes protein (MNK; ATP7A) is a copper-transporting P-type ATPase that is defective in the copper deficiency disorder, Menkes disease. MNK is localized in the trans-Golgi network and transports copper to enzymes synthesized within secretory compartments. However, in cells exposed to excessive copper, MNK traffics to the plasma membrane where it functions in copper efflux. A conserved feature of all P-type ATPases is the formation of an acyl-phosphate intermediate, which occurs as part of the catalytic cycle during cation transport. In this study we investigated the effect of mutations within conserved catalytic regions of MNK on intracellular localization and trafficking from the trans-Golgi network (TGN). Our findings suggest that mutations that block formation of the phosphorylated catalytic intermediate also prevent copper-induced relocalization of MNK from the TGN. Furthermore, mutations in the phosphatase domain, which resulted in hyperphosphorylation of MNK, caused constitutive trafficking from the TGN to the plasma membrane. A similar effect on trafficking was observed with a phosphatase mutation in the closely related copper ATPase, ATP7B, affected in Wilson disease. These findings suggest that the copper-induced trafficking of the Menkes and Wilson disease copper ATPases is associated with the phosphorylated intermediate that is formed during the catalysis of these pumps. Our findings describe a novel mechanism for regulating the subcellular location of a transport protein involving the recognition of intermediate conformations during catalysis.  相似文献   

5.
6.
7.
Menkes disease is an X-linked disorder of copper metabolism that is usually fatal. The affected gene has recently been cloned and encodes one of the two human copper ATPases. If the Menkes ATPase is defective, copper is trapped in the intestinal mucosa, leading to systemic copper deficiency. In order to study copper transport by this ATPase and the effects of disease mutations on its function, we developed a Xenopus laevis oocyte expression system. Wild-type Menkes ATPase cDNA and a fusion of this gene with the green fluorescent protein (GFP) gene was transcribed in vitro and the mRNA injected into oocytes. Expression in oocytes was analyzed by Western blotting and fluorescence microscopy. The Menkes ATPase-GFP chimera appeared to localize primarily to the plasma membrane as assessed by confocal microscopy. This system should thus provide an interesting new tool to study the function of the Menkes ATPase.  相似文献   

8.
Wilson's disease protein (WNDP) is a product of a gene ATP7B that is mutated in patients with Wilson's disease, a severe genetic disorder with hepatic and neurological manifestations caused by accumulation of copper in the liver and brain. In a cell, WNDP transports copper across various cell membranes using energy of ATP-hydrolysis. Copper regulates WNDP at several levels, modulating its catalytic activity, posttranslational modification, and intracellular localization. This review summarizes recent studies on enzymatic function and copper-dependent regulation of WNDP. Specifically, we describe the molecular architecture and major biochemical properties of WNDP, discuss advantages of the recently developed functional expression of WNDP in insect cells, and summarize the results of the ligand-binding studies and molecular modeling experiments for the ATP-binding domain of WNDP. In addition, we speculate on how copper binding may regulate the activity and intracellular distribution of WNDP, and what role the human copper chaperone Atox1 may play in these processes.  相似文献   

9.
The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken beta-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7a(Mo-br)). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6+/-4.9 microg/g in corrected males vs. 137.0+/-44.3 microg/g in heterozygotes) and small intestine (15.6+/-2.5 microg/g in corrected males vs. 15.7+/-2.8 microg/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.  相似文献   

10.
The Menkes ATPase (MNK) has an essential role in the translocation of copper across cellular membranes. In a complementary manner, the intracellular concentration of copper regulates the activity and cellular location of the ATPase through its six homologous amino-terminal domains. The roles of the six amino-terminal domains in the activation and cellular trafficking processes are unknown. Understanding the role of these domains relies on the development of an understanding of their metal-binding properties and structural properties. The second conserved sub-domain of MNK was over-expressed, purified and its copper-binding properties characterised. Reconstitution studies demonstrate that copper binds to MNKr2 as Cu(I) with a stoichiometry of one copper per domain. This is the first direct evidence of copper-binding to the MNK amino-terminal repeats. Circular dichroism studies suggest that the binding or loss of copper to MNKr2 does not cause substantial changes to the secondary structure of the protein.  相似文献   

11.
Menkes disease is an X‐linked, recessive disorder of copper metabolism that occurs in approximately 1 in 200,000 live births. The condition is characterized by skeletal abnormalities, severe mental retardation, neurologic degeneration, and patient mortality in early childhood. The symptoms of Menkes disease result from a deficiency of serum copper and copper‐dependent enzymes. A candidate gene for the disease has been isolated and designated MNK. The MNK gene codes for a P‐type cation transporting ATPase, based on homology to known P‐type ATPases and in vitro experimentation. cDNA clones of MNK in Menkes patients show diminished or absented hybridization in northern blot experiments. The Menkes protein functions to export excess intracellular copper and activates upon Cu(I) binding to the six metal‐binding repeats in the amino‐terminal domain. The loss of Menkes protein activity blocks the export of dietary copper from the gastrointestinal tract and causes the copper deficiency associated with Menkes disease. Each of the Menkes protein amino‐terminal repeats contains a conserved ‐X‐Met‐X‐Cys‐X‐X‐Cys‐ motif (where X is any amino acid). These metal‐binding repeats are conserved in other cation exporting ATPases involved in metal metabolism and in proteins involved in cellular defense against heavy metals in both prokaryotes and eukaryotes. An overview of copper metabolism in humans and a discussion of our understanding of the molecular basis of cellular copper homeostasis is presented. This forms the basis for a discussion of Menkes disease and the protein deficit in this disease. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 93–106, 1999  相似文献   

12.
Copper is an essential co-factor for several key metabolic processes. This requirement in humans is underscored by Menkes disease, an X-linked copper deficiency disorder caused by mutations in the copper transporting P-type ATPase, MNK. MNK is located in the trans-Golgi network where it transports copper to secreted cuproenzymes. Increases in copper concentration stimulate the trafficking of MNK to the plasma membrane where it effluxes copper. In this study, a Menkes disease mutation, G1019D, located in the large cytoplasmic loop of MNK, was characterized in transfected cultured cells. In copper-limiting conditions the G1019D mutant protein was retained in the endoplasmic reticulum. However, this mislocalization was corrected by the addition of copper to cells via a process that was dependent upon the copper binding sites at the N-terminal region of MNK. Reduced growth temperature and the chemical chaperone, glycerol, were found to correct the mislocalization of the G1019D mutant, suggesting this mutation interferes with protein folding in the secretory pathway. These findings identify G1019D as the first conditional mutation associated with Menkes disease and demonstrate correction of the mislocalized protein by copper supplementation. Our findings provide a molecular framework for understanding how mutations that affect the proper folding of the MNK transporter in Menkes patients may be responsive to parenteral copper therapy.  相似文献   

13.
The present work describes an attempt to identify reliable criteria which could be used as distance indices between protein sequences. Seven different criteria have been tested: i and ii) the scores of the alignments as given by the BESTFIT and the FASTA programs; iii) the ratio parameter, i.e. the BESTFIT score divided by the length of the aligned peptides; iv and v) the statistical significance (Z-scores) of the scores calculated by BESTFIT and FASTA, as obtained by comparison with shuffled sequences; vi) the Z-scores provided by the program RELATE which performs a segment-by-segment comparison of 2 sequences, and vii) an original distance index calculated by the program DOCMA from all the pairwise dotplots between the sequences. These 7 criteria have been tested against the aminoacid sequences of 39 globins and those of the 20 aminoacyl-tRNA synthetases from E. coli. The distances between the sequences were analyzed by the multivariate analysis techniques. The results show that the distances calculated from the scores of the pairwise alignments are not adequately sensitive. The Z-score from RELATE is not selective enough and too demanding in computer time. Three criteria gave a classification consistent with the known similarities between the sequences in the sets, namely the Z-scores from BESTFIT and FASTA and the multiple dotplot comparison distance index from DOCMA.  相似文献   

14.
15.
16.
The homeostatic regulation of essential elements such as copper requires many proteins whose activities are often mediated and tightly coordinated through protein-protein interactions. This regulation ensures that cells receive enough copper without intracellular concentrations reaching toxic levels. To date, only a small number of proteins implicated in copper homeostasis have been identified, and little is known of the protein-protein interactions required for this process. To identify other proteins important for copper homeostasis, while also elucidating the protein-protein interactions that are integral to the process, we have utilized a known copper protein, the copper ATPase ATP7A, as a bait in a yeast two-hybrid screen of a human cDNA library to search for interacting partners. One of the ATP7A-interacting proteins identified is a novel protein with a single PDZ domain. This protein was recently identified to interact with the plasma membrane calcium ATPase b-splice variants. We propose a change in name for this protein from PISP (plasma membrane calcium ATPase-interacting single-PDZ protein) to AIPP1 (ATPase-interacting PDZ protein) and suggest that it represents the protein that interacts with the class I PDZ binding motif identified at the ATP7A C terminus. The interaction in mammalian cells was confirmed and an additional splice variant of AIPP1 was identified. This study represents an essential step forward in identifying the proteins and elucidating the network of protein-protein interactions involved in maintaining copper homeostasis and validates the use of the yeast two-hybrid approach for this purpose.  相似文献   

17.
J M Claverie 《Genomics》1992,12(4):838-841
The search for significant local similarities with known protein sequences is a powerful method for interpreting anonymous cDNA sequences or locating coding exons within genomic DNA sequences at a stage where the average contig size is still very small. The BLASTx program, implemented on the National Center for Biotechnology Information server, allows a sensitive search of all putative translations of a nucleotide query sequence against all known proteins in a matter of seconds. From an analysis of the current databases, I report a set of protein sequences exhibiting high local similarity to Alu repeat or vector sequences. These entries can lead to misleading interpretations of similarity searches. During the course of this study, the protease of a human spumaretrovirus was found to have integrated the 3' end half of the U2 snRNA.  相似文献   

18.
The lethal disease anthrax is propagated by spores of Bacillus anthracis, which can penetrate into the mammalian host by inhalation, causing a rapid progression of the disease and a mostly fatal outcome. We have solved the three-dimensional structure of the major surface protein BclA on B. anthracis spores. Surprisingly, the structure resembles C1q, the first component of complement, despite there being no sequence homology. Although most assays for C1q-like activity, including binding to C1q receptors, suggest that BclA does not mimic C1q, we show that BclA, as well as C1q, interacts with components of the lung alveolar surfactant layer. Thus, to better recognize and invade its hosts, this pathogenic soil bacterium may have evolved a surface protein whose structure is strikingly close to a mammalian protein.  相似文献   

19.
Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using 1H and 15N heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)2Cys pair, is located on an exposed loop. 1H-15N HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues.  相似文献   

20.
Protein electrostatics plays a key role in ligand binding and protein-protein interactions. Therefore, similarities or dissimilarities in electrostatic potentials can be used as indicators of similarities or dissimilarities in protein function. We here describe a method to compare the electrostatic properties within protein families objectively and quantitatively. Three-dimensional structures are built from database sequences by comparative modeling. Molecular potentials are then computed for these with a continuum solvation model by finite difference solution of the Poisson-Boltzmann equation or analytically as a multipole expansion that permits rapid comparison of very large datasets. This approach is applied to 104 members of the Pleckstrin homology (PH) domain family. The deviation of the potentials of the homology models from those of the corresponding experimental structures is comparable to the variation of the potential in an ensemble of structures from nuclear magnetic resonance data or between snapshots from a molecular dynamics simulation. For this dataset, the results for analysis of the full electrostatic potential and the analysis using only monopole and dipole terms are very similar. The electrostatic properties of the PH domains are generally conserved despite the extreme sequence divergence in this family. Notable exceptions from this conservation are seen for PH domains linked to a Db1 homology (DH) domain and in proteins with internal PH domain repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号