首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

2.
Little is known about the stoichiometry of nutrient cycling by detritivores. Therefore, we explored stoichiometric relationships in an omnivorous/detritivorous fish (gizzard shad, Dorosoma cepedianum) in three lakes that differed in productivity. Gizzard shad can feed on plankton and sediment detritus, but in all three lakes adult gizzard shad derived >98% of carbon (C) and phosphorus (P), and >90% of nitrogen (N) from sediment detritus, and the remainder from zooplankton.
Gizzard shad selectively consumed detritus with higher C, N and P concentrations than ambient lake sediments. Selective detritivory (i.e. the nutrient content of consumed detritus divided by the nutrient content of ambient detritus) was most pronounced in the lake with the lowest detrital nutrient concentrations. N and P cycling rates per fish were also consistently higher in this lake, in agreement with the prediction of stoichiometry theory that excretion rates should increase with food nutrient content. Among-lake differences in nutrient cycling rates were unrelated to inter-lake variation in fish body nutrient contents, which was minimal. The N:P ratio excreted was near Redfield (∼14:1) in all three lakes.
Stoichiometric analyses showed that the C:N and C:P ratios of sediment detritus were much higher (∼2.8×) than ratios of gizzard shad bodies, revealing substantial N and P imbalances between consumers and their food source. Gizzard shad alleviate N imbalance by selectively feeding on high N detritus (low C:N, high N:P), and apparently alleviate P imbalance by excreting nutrients at a higher N:P than that of their food or their bodies. Thus, this detritivore apparently regulates nutrient acquisition and allocation via both pre-absorption processes (selective feeding) and post-absorptive processes (differential N and P excretion).  相似文献   

3.
We examined foods ingested by American brook lamprey larvae from Minnesota streams during spring and summer seasons. The diet was dominated numerically by diatoms, but organic detritus comprised the bulk (>85%) of ingested materials. The organic contents of ingested foods did not differ among streams or between seasons, averaging approximately 70%. Feeding rates based on gut fullness were highest, but most variable, during spring. Assimilation efficiency of the organic fraction of the diet averaged >65% across streams and seasons. Larval American brook lamprey depend on organic detritus to meet most of their nutritional needs and are very efficient at digesting and assimilating these detrital foods. Survival of American brook lamprey populations may be affected by human activities that alter the production and availability of detritus within streams.  相似文献   

4.
Gizzard shad are primarily detritivorous in Acton Lake, a 253-ha impoundment in southwestern Ohio, U.S.A. To determine the magnitude of sediment utilization by the gizzard shad population in Acton Lake. I used data on population density and age structure, daily ration, and feeding selectivity in estimating the mass of sediments processed by shad daily from April through November. At densities of 4595–10 645 fish ha−1(wet weight biomass = 90–121 kgha 1), gizzard shad could process 3.8–23.0 kg of dry sediments ha−1 day 1. On average throughout the growing season, gizzard shad could process a dry mass of sediments each day equivalent to 13% of shad wet weight biomass. Because of the high rate of sedimentation (> 700 kg dry sediment ha−1 day−1) in Acton Lake, gizzard shad can process < 4% of the freshly deposited sediments each day, and therefore are likely to have little effect on benthic community dynamics in the system.  相似文献   

5.
Ontogeny, diet shifts, and nutrient stoichiometry in fish   总被引:1,自引:0,他引:1  
Alberto Pilati  Michael J. Vanni 《Oikos》2007,116(10):1663-1674
Most stoichiometric models do not consider the importance of ontogenetic changes in body nutrient composition and excretion rates. We quantified ontogenetic variation in stoichiometry and diet in gizzard shad, Dorosoma cepedianum , an omnivorous fish with a pronounced ontogenetic diet shift; and zebrafish, Danio rerio, grown in the lab with a constant diet. In both species, body stoichiometry varied considerably along the life cycle. Larval gizzard shad and zebrafish had higher molar C:P and N:P ratios than larger fish. Variation in body nutrient ratios was driven mainly by body P, which increased with size. Gizzard shad body calcium content was highly correlated with P content, indicating that ontogenetic P variation is associated with bone formation. Similar trends in body stoichiometry of zebrafish, grown under constant diet in the laboratory, suggest that ontogeny (e.g. bone formation) and not diet shift is the main factor affecting fish body stoichiometry in larval and juvenile stages. The N:P ratio of nutrient excretion also varied ontogenetically in gizzard shad, but the decline from larvae to juveniles appears to be largely associated with variation in the N:P of alternative food resources (zooplankton vs detritus) rather than by fish body N:P. Furthermore, the N:P ratio of larval gizzard shad excretion appears to be driven more by the N:P ratio at which individuals allocate nutrients to growth, more so than static body N:P, further illustrating the need to consider ontogenetic variation. Our results thus show that fish exhibit considerable ontogenetic variation in body stoichiometry, driven by an inherent increase in the relative allocation of P to bones, whereas ontogenetic variation in excretion N:P ratio of gizzard shad is driven more by variation in food N:P than by body N:P.  相似文献   

6.
L. E. Miranda  H. Gu 《Hydrobiologia》1998,377(1-3):73-83
We studied dietary shifts in the early life stages of gizzard shad Dorosoma cepedianum, a dominant forage species in North American reservoirs. Larval fish and zooplankton samples were collected weekly during spring in Sardis Reservoir, Mississippi, USA. Diet and prey electivity data suggested the existence of three dietary niches during early life stages: microzooplankton (larvae ≤10 mm total length) in which microzooplankters comprised over 90% by number; crustacean zooplankton (larvae 11–25 mm) in which larval gizzard shad consumed substantial numbers of crustacean zooplankton; and microplankton (larvae >25 mm) in which gizzard shad shifted to filtering protozoans, rotifers, and phytoplankton. There was a high overlap (84%) between the diet of larval gizzard shad and crappies Pomoxis spp. during early May. Larval gizzard shad can potentially reduce microzooplankton density through predation, then shift to crustacean zooplankton and drive their density to decline, then revert to filtration of microzooplankton and exploit phytoplankton. Although, gizzard shad have the ability to influence trophic interactions in reservoir ecosystems, their influence may sometimes be masked by the intensity of bottom-up and top-down effects, as well as population and community interactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Production of larvae by threadfin shad, Dorosoma petenense, and gizzard shad, D. cepedianum, varied over two orders of magnitude and was regulated by adult threadfin shad abundance over five years in Normandy Reservoir, Tennessee. Significantly more larvae of both species were produced in years following winterkills of threadfin shad (repeated-measures ANOVA, df=4, 75; F > 21.44, p=0.0001). Peak geometric mean catch of threadfin shad larvae in neuston samples was inversely related to biomass (kg ha–1; r = – 0.91; p=0.031) and density (no. ha–1; r=– 0.89; p = 0.043) of adult (> 70 mm total length) threadfin shad in mid-summer cove samples. Peak geometric mean catch of gizzard shad larvae was also inversely related to adult threadfin shad biomass (r = – 0.93; p=0.022) and density (r=– 0.88; p=0.046) in cove samples. Winterkills of threadfin shad were size selective, killing all fish under 60 mm total length but allowing some unknown percentage of larger fish to survive. When threadfin shad stocks were reduced by winterkills, surviving threadfin shad and gizzard shad may have taken advantage of less competition for food resources in early spring and increased condition enough to spawn successfully.  相似文献   

8.
Synopsis Starvation was apparently responsible for a large die-off of gizzard shad, Dorosoma cepedianum, in several east Tennessee reservoirs during the spring of 1983. Condition indices, calorific equivalents, lipids, and blood parameters of electrofished (control) shad from Watts Bar Reservoir were significantly higher than these parameters for recently dead shad and for stressed shad, indicating that the stressed and dead fish were at similar levels of physiological condition. We hypothesize that mortality due to starvation resulted from a year-long series of unusual environmental conditions beginning with an abnormally warm spring in 1982 which delayed spawning for some shad, a mild winter in 1982–1983 which increased metabolic demands, and an unusually cool spring in 1983 which delayed food availability. These events may have acted in a cumulative fashion, with each inducing additional increments of stress until lipid stores were depleted to a nonrecovery level, which appears to be about 4% of dry body weight. At least 10% of the adult gizzard shad died of starvation. Most predators were probably not adversely affected by the die-off because of the high availability of shad smaller than 16 cm (total length) and the vulnerability of stressed shad to predation.Energy Division, Oak Ridge National Laboratory  相似文献   

9.
Effects of gizzard shad on benthic communities in reservoirs   总被引:1,自引:0,他引:1  
Effects of gizzard shad Dorosoma cepedianum on benthic communities in a large southern reservoir (Lake Texoma, U.S.A.) were examined during two field enclosure and exclosure experiments in which enclosures were stocked at high and low densities in 1998 and 1999, respectively. In both years, chironomid abundance significantly increased in treatments that excluded large fishes from foraging on sediments. Mean abundance of chironomids and ostracods were significantly higher ( P  < 0·05) in exclosures than enclosures stocked with gizzard shad at 1140–1210 kg ha−1. In 1999, benthic invertebrate abundances did not differ ( P  > 0·08) between exclosure and enclosures stocked at 175–213 kg ha−1. Per cent organic matter, algal abundance and abundance of other macroinvertebrates in sediments did not differ significantly among treatments in either year. Although chironomid abundance was reduced in gizzard shad enclosures in 1998, food habits from this and other studies showed that adult gizzard shad in Lake Texoma only consumed detritus and algae. It is likely that high sedimentation rates in Lake Texoma limit the ability of gizzard shad to regulate algae and detritus in benthic sediments. Thus, it is concluded that disturbance of benthic sediments by gizzard shad caused the observed reduction in chironomid abundance, rather than through consumption or competition for resources.  相似文献   

10.
The life history and production characteristics of Neomysis mercedis from two British Columbia lakes were examined for their potential influence on zooplankton and limnetic fish communities. During the day, mysids in shallow Muriel Lake (45 m) were on or near the bottom; in Kennedy Lake (> 100 m), mysids remained deeper than 50 m. In both lakes, mysids spent summer nights at 0–15 m depths despite > 20 °C temperatures. Mysid density was not strongly correlated with lake depth. Mysids generally displayed spring to early summer minima and late summer to fall maxima in numbers and biomass. Single peaks in gravid females and juvenile mysid abundance, and the absence of pronounced seasonal size changes of gravid females suggest that N. mercedis produced a single generation each year. Fecundities of study lake mysids are the lowest on record, and although size-dependent, exhibited unusually high variability. Annual productivity of mysids averaged 485 mg m–2 y–1 (range 205–690). Calculations indicate mysids consume several times more zooplankton per annum than limnetic fish do. N. mercedis is likely an important competitor of juvenile sockeye salmon (Oncorhynchus nerka) since: (i) sockeye exhibit food limited growth and survival patterns in coastal lakes, (ii) mysids and sockeye consume similar zooplankton prey and (iii) mysids do not contribute greatly to sockeye diet (i.e. < 26% of summer and fall diets by numbers or weight).  相似文献   

11.
The natural food ofOreochromis niloticus in Lake Awasa was studied from the stomach contents of 10 fish measuring 18–32 cm (standard length) monthly from August 1984 to April 1986.Chroococcus, Oscillatoria andBotryococcus were found to be important food items in the diet. Animal foods were observed on rare occasions and these were mainly Rotifera. Blue-green algae as a group contribute about 28.1% of the ash free dry weight (AFDW) whereas diatoms and green algae (excludingBotryococcus) make 2.31% and 2.39% of AFDW, respectively.Botryococcus, detritus and other algae comprised 67.2% of AFDW and it was suspected that more than half of this was contributed byBotryococcus. Blue-green algae, which were especially abundant in the diet during the dry season, November–February, are nutritionally most important. Seasonal variation in algal species composition could influence the quality of food ingested by the fish.  相似文献   

12.
Bighead and silver carp are well established in the Mississippi River basin following their accidental introduction in the 1980s. Referred to collectively as Asian carp, these species are filter feeders consuming phytoplankton and zooplankton. We examined diet overlap and electivity of Asian carp and three native filter feeding fishes, bigmouth buffalo, gizzard shad, and paddlefish, in backwater lakes of the Illinois and Mississippi rivers. Rotifers, Keratella spp., Brachionus spp., and Trichocerca spp., were the most common prey items consumed by Asian carp and gizzard shad, whereas crustacean zooplankton were the preferred prey of paddlefish. Bigmouth buffalo diet was broad, including both rotifers and crustacean zooplankton. Dietary overlap with Asian carp was greatest for gizzard shad followed by bigmouth buffalo, but we found little diet overlap for paddlefish. Diet similarity based on taxonomy correlated strongly with diet similarity based on size suggesting filtration efficiency influenced the overlap patterns we observed. Although rotifers were the most common prey item consumed by both bighead and silver carp, we found a negative relation between silver carp CPUE and cladoceran density. The competitive effect of Asian carp on native fishes may be forestalled because of the high productivity of Illinois and Mississippi river habitats, yet the potential for negative consequences of Asian carp in less productive ecosystems, including Lake Michigan, should not be underestimated.  相似文献   

13.
The nutritive quality of ingested material of adult Oreochromis mossambicus wild populations from 12 perennial, man-made lakes were evaluated for four climatic seasons. The seasonal variation in condition of each population, and the overall condition of each population, considered as the theoretical weight of a 20cm individual, was computed from the length-weight regressions, which were curvilinear. The mean overall condition of the O. mossambicus reservoir population was 152.6 g ( s.d. ± 9.5) and ranged between 139.8 and 167.8 g. Distinct patterns in the seasonal changes in condition of an individual population were not apparent. The mean percentage of protein and total organic matter (TOM) and calorific content (kJg−1) of the ingested material were 20.7% ( s.d. ± 3.7; range 9.6–35.2%), 46.0% ( s.d. ± 9.8; range 20.9–73.7%) and 11.6 ( s.d. ± 3.4; range 4.6–20.9) respectively. The amount of each of the above components for any one population varied seasonally in relation to the changes in feeding habit. The protein content of the ingested material of those populations devouring predominantly detritus also showed seasonal variability. The amount of protein (mg) in the digestible total organic matter (DTOM) and the calorific content (Cal) in the ingested material were related to the TOM content as follows: The overall body condition (BC) of O. mossambicus populations was linearly rebated to the digestible protein: energy ratio (PER) thus: The study indicates that a mixed diet was superior in nutritional quality to a single-component diet. especially with respect to detrital material.  相似文献   

14.
This study compares and contrasts the dynamics of phytoplankton, zooplankton, and nutrients in two of the largest shallow lakes in the USA (Lake Apopka, Florida) and Europe (Lago Trasimeno, Umbria, Italy) and considers particularly the biomass ratio of zooplankton to phytoplankton (BZ:BP) in relation to nutrient levels and in the context of data from other subtropical and temperate lakes. Lake Apopka is hypereutrophic with higher concentrations of total phosphorus (TP), nitrogen (TN), and nearly an order of magnitude higher BP than Lago Trasimeno. However, combined data from the two lakes can be fit to a single log–log regression model that explains 72% of the variability in BP based on TP. In contrast, BZ has a significant positive log–log relationship with TP only for Lago Trasimeno, and is much lower than expected based on the TP concentrations observed in Lake Apopka. Lake Apopka has a fish assemblage that includes high densities of gizzard shad (Dorosoma cepedianum) and threadfin shad (D. petenense), similar to other eutrophic Florida lakes that also have extreme low BZ. The ratio BZ:BP is below 0.01 in Lake Apopka, 10-fold lower than in Trasimeno and among the lowest values reported in the literature. Although stress of high water temperature and a greater proportion of inedible cyanobacteria may be contributing factors, the collective results support an emerging view that fish predation limits the biomass of crustacean zooplankton in subtropical lakes. Handling editor: S. I. Dodson  相似文献   

15.
We measured tributary inputs, algal nutrient demand and excretion rates of consumers (gizzard shad and zooplankton) at a eutrophic river impoundment. During two summers with contrasting flow regimes, tributary inputs accounted for 38% (1998) and 3% (1999) of algal N demand and 95% (1998) and 17% (1999) of algal P demand. Gizzard shad contributions averaged 14% and 20% of algal demand for N whereas P contributions were 31% and 58% (1998, 1999; respectively). Zooplankton recycling accounted for a comparable fraction of algal P demand (47%) but a larger fraction of N demand (43%) because their excretia were N rich (N:P = 13:1) compared to fish (7:1). Nutrient release by one of the consumers (gizzard shad) was compared with tributary loading over a nine-year period to assess inter-annual variation in their relative importance. Historical records of inflow chemistry, discharge and gizzard shad biomass showed that variation in tributary inputs was the primary determinant of seasonal and inter-annual variation in nutrient loading. Consumer-derived nutrients were important in late-summer and during years when tributary inputs were low. We propose a conceptual model in which primary production is regulated by external nutrient loading and consumer recycling acts to stabilize and sustain production during periods of diminished external inputs.  相似文献   

16.
1. The nutritional value of detrital aggregate, which refers to the mixture of plant debris (i.e. organic detritus) and microorganisms, in the diets of fathead minnows ( Pimephales promelas Rafinesque) was assessed in experiments using surface benthic samples from three sites in Clear Lake (Houghton County, Michigan, U.S.A.).
2. In the first experiment, fish were fed small (<250 μm) and large (250–1000 μm) particle detritus from one profundal and two littoral sites. Fish in all treatments lost weight. However, fish fed detritus from the littoral erosional site, where wild fish forage intensively, had significantly lower weight loss.
3. In the second experiment, fish were fed various quantities of Artemia with or without ad libitum erosional site detritus. Growth was proportional to the mass of Artemia consumed, yet minnows showed increased growth with the detritus supplement at low invertebrate rations.
4. This study shows that detrital aggregate produced by decompositional processes at the erosional site could be nutritionally valuable to minnows. It appears that a feeding strategy of consuming detritus with a higher nutritional quality (i.e. detrital aggregate) as a dietary supplement benefits fishes in temperate as well as tropical systems.  相似文献   

17.
Stable sulphur isotopic composition (δ34S) of gizzard shad Dorosoma cepedianum was used to investigate the seasonal and ontogenetic variation in the diet of young and adult fish. This study evaluated fish from a hypereutrophic lake that had recently undergone a 40% reduction of large (>300 mm total length, L T) D. cepedianum biomass as part of a biomanipulation experiment, which aimed at reducing internal nutrient loading. Dorosoma cepedianum δ34S values showed evidence of ontogenetic changes with young fish (<200 mm L T) depending more on benthic food sources than adults (>200 mm L T). The δ34S composition of the adult fish suggested an increasing importance of zooplankton in the diet, although benthic food sources remained part of the diet of all D. cepedianum collected in this study. The results indicated that benthic feeding is used by D. cepedianum of all sizes, suggesting that biomanipulation efforts may need to target all sizes of fish to realize benefits.  相似文献   

18.
Modelling phosphorus fluxes in the hypertrophic Loosdrecht Lakes   总被引:2,自引:0,他引:2  
A dynamic, deterministic model is presented to simulate the phosphorus cycle and plankton growth in the shallow, hypertrophic Loosdrecht Lakes (The Netherlands) before and after restoration measures. Besides inorganic phosphorus (SRP) in both the surface water and the interstitial water, the model comprises three algal groups, zooplankton, fish, detritus, zoobenthos and upper sediment (all modelled both in carbon and in phosphorus). Within the model system, the phosphorus cycle is completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. Sediment processes are described in a simplified form.Simulated values are largely within the range of observed ones. The detrital fraction of the seston (=phytoplankton+detritus) varies from 50–60% in summer to about 90% in winter. SRP in the surface water is very low during most of the year. Sensitivity for external phosphorus input is larger for algal and detrital P than for algal and detrital C and chlorophyll-a. So the P/C ratio of the seston decreases following restoration measures, as is observed in the lakes, while the much higher P/C ratios of zooplankton and fish remain constant. Phosphorus mobilisation from the sediment decreases with decreasing external input. Adaptation of the model system to the reduced loading takes place within about two years.Sources of uncertainty in the model include the limited knowledge on selective grazing as well as on mortality and mineralisation processes.  相似文献   

19.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

20.
Digestive tract contents of 241 specimens captured between March 1998 and November 1999 were analysed using both qualitative and quantitative methods to determine diet composition and feeding habits of Squalius cephalus (L., 1758) inhabiting Lake Tödürge, Turkey. Ages ranged from I to VI years; 60.6% of the fish were females, 39.4% males. The chub population appeared to consume a wide range of food items such as phytoplankton, zooplankton, nematodes, insects, fish, macrophytes, plant and animal detritus, whereby zooplankton (69.2%) predominated. Although individuals in the age I group preferred plankton (phytoplankton frequently; zooplankton infrequently), the older specimens (age groups IV, V and VI) behaved mostly as carnivores but also consumed some macrophytes. While there were no significant differences between diet compositions of males and females, seasonal changes were observed in frequency of occurrence, quality and quantity of consumption, and feeding activity. The chub specimens fed most heavily during spring (the pre‐spawning period: March, April and May). Highest food volume (13.0 cm3) consumed was in May and the lowest in September (2.0 cm3) while also being correlated with temperature. All of the food items were found in the digestive tract (82.1% of the specimens examined over all seasons). Highest fullness (84.9%) was reached in autumn and the lowest during summer (79.8%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号