首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Emerging evidence suggests that K(+) channel inactivation involves coupling between residues in adjacent regions of the channel. Human ether-a-go-go-related gene-1 (hERG1) K(+) channels undergo a fast inactivation gating process that is crucial for maintaining electrical stability in the heart. The molecular mechanisms that drive inactivation in hERG1 channels are unknown. Using alanine scanning mutagenesis, we show that a pore helix residue (Thr-618) that points toward the S5 segment is critical for normal inactivation gating. Amino acid substitutions at position 618 modulate the free energy of inactivation gating, causing enhanced or reduced inactivation. Mutation of an S5 residue that is predicted to be adjacent to Thr-618 (W568L) abolishes inactivation and alters ion selectivity. The introduction of the Thr-618-equivalent residue in Kv1.5 enhances inactivation. Molecular dynamic simulations of the Kv1.2 tetramer reveal van der Waals coupling between hERG1 618- and 568-equivalent residues and a significant increase in interaction energies when threonine is introduced at the 618-equivalent position. We propose that coupling between the S5 segment and pore helix may participate in the inactivation process in hERG1 channels.  相似文献   

2.
The human ether‐à‐go‐go related gene (hERG) encodes a protein that forms a voltage‐gated potassium channel and plays an important role in the heart by controlling the rapid delayed rectifier K+ current (IKr). The S4–S5 linker was shown to be important for the gating of the hERG channel. Nuclear magnetic resonance study showed that a peptide derived from the S4–S5 linker had no well‐ordered structure in aqueous solution and adopted a 310‐helix (E544‐Y545‐G546) structure in detergent micelles. The existence of an amphipathic helix was confirmed, which may be important for interaction with cell membrane. Close contact between side chains of residues R541 and E544 was observed, which may be important for its regulation of channel gating. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The hERG potassium channel is a member of the voltage gated potassium (Kv) channel family, comprising a pore domain and four voltage sensing domains (VSDs). Like other Kv channels, the VSD senses changes in membrane voltage and transmits the signal to gates located in the pore domain; the gates open at positive potentials (activation) and close at negative potentials, thereby controlling the ion flux. hERG, however, differs from other Kv channels in that it is activated slowly but inactivated rapidly – a property that is crucial for the role it plays in the repolarization of the cardiac action potential. Voltage-gating requires movement of gating charges across the membrane electric field, which is accomplished by the transmembrane movement of the fourth transmembrane segment, S4, of the VSD containing the positively charged arginine or lysine residues. Here we ask if the functional differences between hERG and other Kv channels could arise from differences in the transmembrane movement of S4. To address this, we have introduced single cysteine residues into the S4 region of the VSD, expressed the mutant channels in Xenopus oocytes and examined the effect of membrane impermeable para-chloromercuribenzene sulphonate on function by the two-electrode voltage clamp technique. Our results show that depolarization results in the accessibility of seven consecutive S4 residues, including the first two charged residues, K525 and R528, to extracellularly applied reagent. These data indicate that the extent of S4 movement in hERG is similar to other Kv channels, including the archabacterial KvAP and the Shaker channel of Drosophila.  相似文献   

4.
The human Ether-à-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.  相似文献   

5.
We located a novel binding site for grayanotoxin on the cytoplasmic linkers of voltage-dependent cardiac (rH1) or skeletal-muscle (mu 1) Na(+) channel isoforms (segments S4-S5 in domains D1 and D4), using the alanine scanning substitution method. GTX-modification of Na(+) channels, transiently expressed in HEK 293 cells, was evaluated under whole-cell voltage clamp, from the ratio of maximum chord conductance for modified and unmodified Na(+) channels. In mu 1, mutations K237A, L243A, S246A, K248A, K249A, L250A, S251A, or T1463A, caused a moderate, but statistically significant decrease in this ratio. On making corresponding mutations in rH1, only L244A dramatically reduced the ratio. Because in mu 1, the serine at position 251 is the only heterologous residue with respect to rH1 (Ala-252), we made a double mutant L243A&S251A to match the sequence of mu 1 and rH1 in S4-S5 linkers of both domains. This double mutation resulted in a significant decrease in the ratio, to the same extent as L244A substitution in rH1 did, indicating that the site at Leu-244 in rH1 or at Leu-243 in mu 1 is a novel one, exhibiting a synergistic effect of grayanotoxin.  相似文献   

6.
A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the S4-S5 linker is the structural link between the voltage sensing and pore domains. In this study, we used chimeras constructed from hERG and ether-a'-go-go (EAG) channels to identify interactions between residues in the S4-S5 linker and S6 domain that were critical for stabilizing the channel in a closed state. To verify the spatial proximity of these regions, we introduced cysteines in the S4-S5 linker and at the C-terminal end of the S6 domain and then probed for the effect of oxidation. The D540C-L666C channel current decreased in an oxidizing environment in a state-dependent manner consistent with formation of a disulfide bond that locked the channel in a closed state. Disulfide bond formation also restricted movement of the voltage sensor, as measured by gating currents. Taken together, these data confirm that the S4-S5 linker directly couples voltage sensor movement to the activation gate. Moreover, rather than functioning simply as a mechanical lever, these findings imply that specific interactions between the S4-S5 linker and the activation gate stabilize the closed channel conformation.  相似文献   

7.
DDT inhibits Na channel inactivation and deactivation, promotes Na channel activation and reduces the resting potential of Xenopus oocytes expressing the Drosophila para Na channel. These changes are only marginally influenced by the single mutation M918T (super-kdr) but are reduced approximately 10-fold by either the single mutation L1014F (kdr) or the double mutation L1014F+M918T, both of which confer resistance to the pyrethroids permethrin and deltamethrin. We conclude that DDT binds either to or in the region of L1014 on IIS6 but only weakly to M918 on the IIS4-S5 linker, which is part of a high-affinity binding site for permethrin and deltamethrin.  相似文献   

8.
Avian influenza viruses of subtype H5N1 circulating in animals continue to pose threats to human health. The binding preference of the viral surface protein hemagglutinin (HA) to sialosaccharides of receptors is an important area for understanding mutations in the receptor binding site that could be the cause for avian-to-human transmission. In the present work, we studied the effect of two receptor binding site mutations, S221P singly and in combination with another mutation K216E in the HA protein of influenza A H5N1 viruses. Docking of sialic acid ligands corresponding to both avian and human receptors and molecular dynamics simulations of the complexes for wild and mutant strains of H5N1 viruses were carried out. The H5N1 strain possessing the S221P mutation indicated decreased binding to α2,3-linked sialic acids (avian receptor, SAα2,3Gal) when compared to the binding of the wild-type strain that did not possess the HA-221 mutation. The binding to α2,6-linked sialic acids (human receptor, SAα2,6Gal) was found to be comparable, indicating that the mutant strain shows limited dual receptor specificity. On the other hand, the S221P mutation in synergism with the K216E mutation in the binding site, resulted in increased binding affinity for SAα2,6Gal when compared to SAα2,3Gal, indicative of enhanced binding to human receptors. The in-depth study of the molecular interactions in the docked complexes could explain how co-occurring mutations in the HA viral protein can aid in providing fitness advantage to the virus, in the context of host receptor specificity in emerging variants of H5N1 influenza viruses.  相似文献   

9.
(20S)-[7,7,21,21-2H(4)]-3beta-(tert-Butyldimethylsilanyloxy)-20-methyl-pregn-5-en-21-ol, an intermediate for the preparation of deuterated isotopomers of sterols to be used as standards for biomedical studies, was prepared by reduction with dichloroaluminum deuteride of ethyl (20S)-3beta-(tert-butyldimethylsilanyloxy)-7-oxo-pregn-5-en-20-carboxylate. Using controlled experimental conditions, it has also been shown that the dichloroaluminum hydride reduction of a 7-keto steroid affords the corresponding 7beta-hydroxy derivative in a highly stereoselective manner.  相似文献   

10.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号