首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The pathway of mRNA degradation has been extensively studied in the yeast, Saccharomyces cerevisiae, and it is now clear that many mRNAs decay by a deadenylation-dependent mechanism. Although several of the factors required for mRNA decay have been identified, the regulation and precise roles of many of the proteins involved remains unclear. We have developed an in vitro system that recapitulates both the deadenylation and the decapping steps of mRNA decay. Furthermore, both deadenylation and decapping are inhibited by poly(A) binding proteins in our assay. Our system has allowed us to separate the decay process from translation and we have shown that the poly(A) tail is capable of inhibiting decapping in an eIF4E-independent manner. Our in vitro system should prove invaluable in dissecting the mechanisms of mRNA turnover.  相似文献   

3.
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1   总被引:4,自引:0,他引:4  
Fischer N  Weis K 《The EMBO journal》2002,21(11):2788-2797
An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m(7)G cap structure at the 5' end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5'-3' exoribonuclease Xrn1. Dhh1 specifically affects mRNA turnover in the deadenylation-dependent decay pathway, but does not act on the degradation of nonsense-containing mRNAs. Cells that lack dhh1 accumulate degradation intermediates that have lost their poly(A) tail but contain an intact 5' cap structure, suggesting that Dhh1 is required for efficient decapping in vivo. Furthermore, recombinant Dhh1 is able to stimulate the activity of the purified decapping enzyme Dcp1 in an in vitro decapping assay. We propose that the DEAD box protein Dhh1 regulates the access of the decapping enzyme to the m(7)G cap by modulating the structure at the 5' end of mRNAs.  相似文献   

4.
Muhlrad D  Parker R 《The EMBO journal》2005,24(5):1033-1045
A major mechanism of eukaryotic mRNA degradation initiates with deadenylation followed by decapping and 5' to 3' degradation. We demonstrate that the yeast EDC1 mRNA, which encodes a protein that enhances decapping, has unique properties and is both protected from deadenylation and undergoes deadenylation-independent decapping. The 3' UTR of the EDC1 mRNA is sufficient for both protection from deadenylation and deadenylation-independent decapping and an extended poly(U) tract within the 3' UTR is required. These observations highlight the diverse forms of decapping regulation and identify a feedback loop that can compensate for decreases in activity of the decapping enzyme. Surprisingly, the decapping of the EDC1 mRNA is slowed by the loss of Not2p, Not4p, and Not5p, which interact with the Ccr4p/Pop2p deadenylase complex. This indicates that the Not proteins can affect decapping, which suggests a possible link between the mRNA deadenylation and decapping machinery.  相似文献   

5.
6.
mRNA decapping is a crucial step in the regulation of mRNA stability and gene expression. Dcp2 is an mRNA decapping enzyme that has been widely studied. We recently reported the presence of a second mammalian cytoplasmic decapping enzyme, Nudt16. Here we address the differential utilization of the two decapping enzymes in specified mRNA decay processes. Using mouse embryonic fibroblast (MEF) cell lines derived from a hypomorphic knockout of the Dcp2 gene with undetectable levels of Dcp2 or MEF cell lines harboring a Nudt16-directed shRNA to generate reduced levels of Nudt16, we demonstrate the distinct roles for Dcp2 and Nudt16 in nonsense-mediated mRNA decay (NMD), decay of ARE-containing mRNA and miRNA-mediated silencing. Our results indicated that NMD preferentially utilizes Dcp2 rather than Nudt16; Dcp2 and Nudt16 are redundant in miRNA-mediated silencing; and Dcp2 and Nudt16 are differentially utilized for ARE-mRNA decay. These data demonstrate that the two distinct decapping enzymes can uniquely function in specific mRNA decay processes in mammalian cells.  相似文献   

7.
Decapping by Dcp1 in Saccharomyces cerevisiae is a key step in mRNA degradation. However, the cap also binds the eukaryotic initiation factor (eIF) complex 4F and its associated proteins. Characterisation of the relationship between decapping and interactions involving eIF4F is an essential step towards understanding polysome disassembly and mRNA decay. Three types of observation suggest how changes in the functional status of eIF4F modulate mRNA stability in vivo. First, partial disruption of the interaction between eIF4E and eIF4G, caused by mutations in eIF4E or the presence of the yeast 4E-binding protein p20, stabilised mRNAs. The interactions of eIF4G and p20 with eIF4E may therefore act to modulate the decapping process. Since we also show that the in vitro decapping rate is not directly affected by the nature of the body of the mRNA, this suggests that changes in eIF4F structure could play a role in triggering decapping during mRNA decay. Second, these effects were seen in the absence of extreme changes in global translation rates in the cell, and are therefore relevant to normal mRNA turnover. Third, a truncated form of eIF4E (Delta196) had a reduced capacity to inhibit Dcp1-mediated decapping in vitro, yet did not change cellular mRNA half-lives. Thus, the accessibility of the cap to Dcp1 in vivo is not simply controlled by competition with eIF4E, but is subject to switching between molecular states with different levels of access.  相似文献   

8.
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5′ 7-methyl guanosine (m7G) cap in the cytoplasm to allow for 5′-to-3′ exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

9.
Functional link between the mammalian exosome and mRNA decapping.   总被引:16,自引:0,他引:16  
Z Wang  M Kiledjian 《Cell》2001,107(6):751-762
Mechanistic understanding of mammalian mRNA turnover remains incomplete. We demonstrate that the 3' to 5' exoribonuclease decay pathway is a major contributor to mRNA decay both in cells and in cell extract. An exoribonuclease-dependent scavenger decapping activity was identified that follows decay of the mRNA and hydrolyzes the residual cap. The decapping activity is associated with a subset of the exosome proteins in vivo, implying a higher-order degradation complex consisting of exoribonucleases and a decapping activity, which together coordinate the decay of an mRNA. These findings indicate that following deadenylation of mammal mRNA, degradation proceeds by a coupled 3' to 5' exoribonucleolytic activity and subsequent hydrolysis of the cap structure by a scavenger decapping activity.  相似文献   

10.
11.
Deadenylation is a widespread effect of miRNA regulation   总被引:2,自引:1,他引:1       下载免费PDF全文
miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that ~60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3′ ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.  相似文献   

12.
Analysis of mutations in the yeast mRNA decapping enzyme   总被引:4,自引:0,他引:4  
Tharun S  Parker R 《Genetics》1999,151(4):1273-1285
  相似文献   

13.
14.
15.
mRNA decapping is a common step shared between two important mRNA decay pathways in yeast, Saccharomyces cerevisiae. To investigate how mRNAs are decapped, we have developed an assay that can be easily used to measure the decapping activity. This assay has been used to isolate yeast strains with altered decapping activities. The results demonstrated that decreased decapping activity in vitro corresponds well with the decapping-deficient phenotype in vivo. This assay has been applied to the purified yeast decapping enzyme Dcp1 protein as well as crude yeast extracts and Xenopus oocyte extracts.  相似文献   

16.
The poly(A) tail is a crucial determinant in the control of both mRNA translation and decay. Poly(A) tail length dictates the triggering of the degradation of the message body in the major 5′ to 3′ and 3′ to 5′ mRNA decay pathways of eukaryotes. In the 5′ to 3′ pathway oligoadenylated but not polyadenylated mRNAs are selectively decapped in vivo, allowing their subsequent degradation by 5′ to 3′ exonucleolysis. The conserved Lsm1p-7p-Pat1p complex is required for normal rates of decapping in vivo, and the purified complex exhibits strong binding preference for oligoadenylated RNAs over polyadenylated or unadenylated RNAs in vitro. In the present study, we show that two lsm1 mutants produce mutant complexes that fail to exhibit such higher affinity for oligoadenylated RNA in vitro. Interestingly, these mutant complexes are normal with regard to their integrity and retain the characteristic RNA binding properties of the wild-type complex, namely, binding near the 3′-end of the RNA, having higher affinity for unadenylated RNAs that carry U-tracts near the 3′-end over those that do not and exhibiting similar affinities for unadenylated and polyadenylated RNAs. Yet, these lsm1 mutants exhibit a strong mRNA decay defect in vivo. These results underscore the importance of Lsm1p-7p-Pat1p complex–mRNA interaction for mRNA decay in vivo and imply that the oligo(A) tail mediated enhancement of such interaction is crucial in that process.  相似文献   

17.
Decapping is a central step in eukaryotic mRNA turnover. Recent studies have identified several factors involved in catalysis and regulation of decapping. These include the following: an mRNA decapping complex containing the proteins Dcp1 and Dcp2; a nucleolar decapping enzyme, X29, involved in the degradation of U8 snoRNA and perhaps of other capped nuclear RNAs; and a decapping 'scavenger' enzyme, DcpS, that hydrolyzes the cap structure resulting from complete 3'-to-5' degradation of mRNAs by the exosome. Several proteins that stimulate mRNA decapping by the Dcp1:Dcp2 complex co-localize with Dcp1 and Dcp2, together with Xrn1, a 5'-to-3' exonuclease, to structures in the cytoplasm called processing bodies. Recent evidence suggests that the processing bodies may constitute specialized cellular compartments of mRNA turnover, which suggests that mRNA and protein localization may be integral to mRNA decay.  相似文献   

18.
Decapping is an important process in the control of eukaryotic mRNA degradation. The scavenger decapping enzyme DcpS functions to clear the cell of cap structure following decay of the RNA body by catalyzing the hydrolysis of m(7)GpppN to m(7)Gp and ppN. Structural analysis has revealed that DcpS is a dimeric protein with a domain-swapped amino terminus. The protein dimer contains two cap binding/hydrolysis sites and displays a symmetric structure with both binding sites in the open conformation in the ligand-free state and an asymmetric conformation with one site open and one site closed in the ligand-bound state. The structural data are suggestive of a dynamic decapping mechanism where each monomer could alternate between an open and closed state. Using transient state kinetic studies, we show that both the rate-limiting step and rate of decapping are regulated by cap substrate. A regulatory mechanism is established by the intrinsic domain-swapped structure of the DcpS dimer such that the decapping reaction is very efficient at low cap substrate concentrations yet regulated with excess cap substrate. These data provide biochemical evidence to verify experimentally a dynamic and mutually exclusive cap hydrolysis activity of the two cap binding sites of DcpS and provide key insights into its regulation.  相似文献   

19.
The decay of eukaryotic mRNA is triggered mainly by deadenylation, which leads to decapping and degradation from the 5′ end of an mRNA. Poly(A)-binding protein has been proposed to inhibit the decapping process and to stabilize mRNA by blocking the recruitment of mRNA to the P-bodies where mRNA degradation takes place after stimulation of translation initiation. In contrast, several lines of evidence show that poly(A)-binding protein (Pab1p) has distinct functions in mRNA decay and translation in yeast. To address the translation-independent function of Pab1p in inhibition of decapping, we examined the contribution of Pab1p to the stability of non-translated mRNAs, an AUG codon-less mRNA or an mRNA containing a stable stem-loop structure at the 5′-UTR. Tethering of Pab1p stabilized non-translated mRNAs, and this stabilization did not require either the eIF4G-interacting domain of Pab1p or the Pab1p-interacting domain of eIF4G. In a ski2Δ mutant in which 3′ to 5′ mRNA degradation activity is defective, stabilization of non-translated mRNAs by the tethering of Pab1p lacking an eIF4G-interacting domain (Pab1–34Cp) requires a cap structure but not a poly(A) tail. In wild type cells, stabilization of non-translated mRNA by tethered Pab1–34Cp results in the accumulation of deadenylated mRNA. These results strongly suggest that tethering of Pab1p may inhibit the decapping reaction after deadenylation, independent of translation. We propose that Pab1p inhibits the decapping reaction in a translation-independent manner in vivo.  相似文献   

20.
In mammalian cells, the enzymatic pathways involved in cytoplasmic mRNA decay are incompletely defined. In this study, we have used two approaches to disrupt activities of deadenylating and/or decapping enzymes to monitor effects on mRNA decay kinetics and trap decay intermediates. Our results show that deadenylation is the key first step that triggers decay of both wild-type stable and nonsense codon-containing unstable beta-globin mRNAs in mouse NIH3T3 fibroblasts. PAN2 and CCR4 are the major poly(A) nucleases active in cytoplasmic deadenylation that have biphasic kinetics, with PAN2 initiating deadenylation followed by CCR4-mediated poly(A) shortening. DCP2-mediated decapping takes place after deadenylation and may serve as a backup mechanism for triggering mRNA decay when initial deadenylation by PAN2 is compromised. Our findings reveal a functional link between deadenylation and decapping and help to define in vivo pathways for mammalian cytoplasmic mRNA decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号