首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, label-free electrochemical impedance-spectroscopy method for sequence-specific detection of DNA using a 4-aminoethylbenzenediazonium (AEBD) salt as a binder for amino-modified probe DNA is reported. This novel method simplifies the anchoring of DNA at the GC surface and opens new ways for the detection of hybridization. The hybridization of target DNA, without and with mismatches, with the probe DNA anchored at the GC surface modified with AEBD, greatly increases the interfacial electron transfer resistance at the double-stranded DNA modified electrodes for the redox couple Fe(CN)(6)(3-/4-). The resistance was measured using electrochemical impedance spectroscopy. The sensor response increased linearly with logarithm of concentration of target DNA in the range 2×10(-12)÷2×10(-6) M. The obtained quantification limit was circa 6.5×10(-17) mole in a 7 μL droplet and corresponded to a concentration of 9.2×10(-12) M of target DNA in the sample. This limit is equivalent to the detection of circa 4×10(7) copies of DNA in a 7 μL droplet or circa 5.7×10(12) DNA copies in one litre of sample.  相似文献   

2.
An enzyme-free amperometric method was established for glucose detection using a nanoporous gold film (NPGF) electrode prepared by a rapid one-step anodic potential step method within 5 min. The prepared NPGF had an extremely high roughness and was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. Electrochemical responses of the as-prepared NPGF to glucose in 0.1M phosphate buffer solution (PBS, pH 7.4) with or without Cl(-) were discussed. In amperometric studies carried out at -0.15 V in the absence of Cl(-), the NPGF electrode exhibited a high sensitivity of 232 μA mM(-1)cm(-2) and gave a linear range from 1mM up to 14 mM with a detection limit of 53.2 μM (with a signal-to-noise ratio of 3). In addition, the oxidation of ascorbic acid (AA) and uric acid (UA) can be completely eliminated at such a low applied potential. On the other hand, the quantification of glucose in 0.1M PBS (pH 7.4) containing 0.1M NaCl offered an extended linear range from 10 μM to 11 mM with a sensitivity of 66.0 μA mM(-1)cm(-2) and a low detection limit of 8.7 μM (signal-to-noise ratio of 3) at a detection potential of 0.2V.  相似文献   

3.
An acetylcholine-selective electrode based on a plasticized polymeric membrane has been developed. The electrode exhibited good selectivity for acetylcholine (ACh) over choline and some common ions, low drift, and a fast response to ACh. The response was linear over an ACh concentration range of 1×10(-6) to 1×10(-3) M with a slope of 59.1±0.1 and a detection limit of 1.5×10(-7)±1.2×10(-8) M. The electrode was used to monitor enzymatic ACh hydrolysis catalyzed by acetylcholinesterase (AChE) at different substrate and enzyme concentrations. A kinetic data analysis permitted the determination of the Michaelis-Menten constant of the enzymatic hydrolysis and AChE activity in the range of 2×10(-5) to 3.8×10(-1)U ml(-1).  相似文献   

4.
In this work, we reported a simple and sensitive method to detect biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), using fluorescent silver nanoclusters (Ag NCs) stabilized by single-stranded DNA (DNA-Ag NCs) as probes. The photoluminescence intensity of DNA-Ag NCs was found to be quenched effectively with the increase of biothiols concentration due to the formed nonfluorescent coordination complex between DNA-Ag NCs and biothiols, resulting in the shift-to-red of emission wavelength. But the fluorescence of DNA-Ag NCs was not changed in the presence of other amino acids at 10-fold higher concentration. Satisfactory detection limits and linear relationships of Cys, GSH and Hcy were obtained, respectively. The resulted plots exhibited good linear relationships in the range from 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.984) for Cys, 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.983) for GSH, and 2.0×10(-6) to 6.0×10(-7) mol L(-1) (R(2)=0.999) for Hcy, respectively; the detection limits of Cys, GSH and Hcy were 4.0 nmol L(-1), 4.0 nmol L(-1), and 0.2 μmol L(-1), respectively. The method was successfully used for the detection of biothiols in human plasma samples.  相似文献   

5.
A novel method for simultaneous determination of atenolol, metoprolol and esmolol was proposed by capillary electrophoresis (CE) separation and electrochemiluminescence (ECL) detection. Poly-β-cyclodextrin (Poly-β-CD) was used as an additive in the running buffer to improve the separation of three analytes. The conditions for CE separation, ECL detection and effect of Poly-β-CD were investigated in detail. The three β-blockers with very similar structures were well separated and detected under the optimum conditions. The linear ranges of the standard solution for atenolol and esmolol were 2.5-125 μmol/L with a detection limit (S/N=3) of 0.5 μmol/L, and for metoprolol was 0.5-25 μmol/L with a detection limit of 0.1 μmol/L. For three β-blockers from spiked aqueous and urine samples, the accuracy and precision including intraday and interday experiments were performed by calculating the recovery, the relative standard deviations of the ECL intensity and the migration time, respectively. The developed method was applied to the determination of metoprolol content in commercial pharmaceutical, and the analytical results are in good agreement with the nominal value with recoveries in the range of 98.7-105%. The proposed method was also applied to the monitoring of pharmacokinetics for metoprolol in human body.  相似文献   

6.
A new LC-ESI-MS/MS assay method has been developed and validated for the quantification of swertiamarin, a representative bioactive substance of Swertia plants, in rat plasma using gentiopicroside, an analog of swertiamarin on chemical structure and chromatographic action, as the internal standard (IS). The swertiamarin and IS were extracted from rat plasma using solid-phase extraction (SPE) as the sample clean-up procedure, and they were chromatographed on a narrow internal diameter column (Agilent ZORBAX ECLIPSE XDB-C(18) 100 mm × 2.1 mm, 1.8 μm) with the mobile phase consisting of methanol and water containing 0.1% acetic acid (25:75, v/v) at a flow rate of 0.2 mL/min. The detection was performed on an Agilent G6410B tandem mass spectrometer by negative ion electrospray ionisation in multiple-reaction monitoring mode while monitoring the transitions of m/z 433 [M+CH(3)COO](-)→179 and m/z 415 [M+CH(3)COO](-)→179 for swertiamarin and IS, respectively. The lower limit of quantification (LLOQ) was 5 ng/mL within a linear range of 5-1000 ng/mL (n=7, r(2)≥0.994), and the limit of detection (LOD) was demonstrated as 1.25 ng/mL (S/N≥3). The method also afforded satisfactory results in terms of sensitivity, specificity, precision (intra- and inter-day), accuracy, recovery, freeze/thaw, long-time stability and dilution integrity. This method was successfully applied to determination of the pharmacokinetic properties of swertiamarin in rats after oral administration at a dose of 20 mg/kg. The following pharmacokinetic parameters were obtained (mean): maximum plasma concentration, 1920.1 ng/mL; time to reach maximum plasma concentration, 0.945 h; elimination half-time, 1.10h; apparent total clearance, 5.638 L/h/kg; and apparent volume of distribution, 9.637 L/kg.  相似文献   

7.
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)<500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10(-5) to 1 × 10(-10) and 1 × 10(-3) to 1 × 10(-8)mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10(-8)mol/L) SMX for a sub-Nernstian slope of -40.3 mV/decade from 5.0 × 10(-8) to 2.4 × 10(-5)mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and "pipette tip"-based sensors were successfully applied to the analysis of aquaculture waters.  相似文献   

8.
A method is described for construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase (Lac) onto manganese dioxide nanoparticles (MnO(2)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/PANI composite electrodeposited onto a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response at pH 5.5 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3 V vs. Ag/AgCl. Linear range, response time, detection limit were 0.1-10 μM (lower concentration range) and 10-500 μM (higher concentration range), 4s and 0.04 μM, respectively. Biosensor measured total phenolic content in tea leaves extract. The enzyme electrode was used 150 times over a period of 5 months.  相似文献   

9.
We described the development and full validation of rapid and accurate liquid chromatography method, coupled with tandem mass spectrometry detection, for quantification of meprobamate in human plasma with [(13)C-(2)H(3)]-meprobamate as internal standard. Plasma pretreatment involved a one-step protein precipitation with acetonitrile. Separation was performed by reversed-phase chromatography on a Luna MercuryMS C18 (20 mm×4 mm×3 μm) column using a gradient elution mode. The mobile phase was a mix of distilled water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The selected reaction monitoring transitions, in electrospray positive ionization, used for quantification were 219.2→158.2 m/z and 223.1→161.1m/z for meprobamate and internal standard, respectively. Qualification transitions were 219.2→97.0 and 223.1→101.1 m/z for meprobamate and internal standard, respectively. The method was linear over the concentration range of 1-300 mg/L. The intra- and inter-day precision values were below 6.4% and accuracy was within 95.3% and 103.6% for all QC levels (5, 75 and 200 mg/L). The lower limit of quantification was 1 mg/L. Total analysis time was reduced to 6 min including sample preparation. The present method is successfully applied to 24/7 clinical toxicology and demonstrated its usefulness to detect meprobamate poisoning.  相似文献   

10.
In this paper, we have constructed a simple, rapid and sensitive biosensor for detection of choline and acetylcholine (ACh) based on the hydrogen peroxide (H(2)O(2))-sensitive quantum dots (QDs). The detection limit for choline was 0.1 μM and the linear range was 0.1-0.9 μM and 5-150 μM, respectively. The detection limit for ACh was found to be 10 μM and the linear range was 10-5000 μM. The wide linear ranges were shown to be suitable for routine analyses of choline and ACh. Possible mechanism of the fluorescence of QDs quenched by H(2)O(2) was an electron transfer (ET) process. The experimental conditions of biosensors were optimized, and anti-interference ability was also presented. We also detected the choline in milk samples and the linear range was 5-150 μM. The detection linear range of ACh in serum was 10-140 μM. Most importantly, the recovery of choline in milk and ACh in serum samples were both close to 99%. The excellent performance of this biosensor showed that the method can be used in practice detection of choline and ACh.  相似文献   

11.
A simple, rapid and validated high performance liquid chromatography method with UV detection for the quantification of an opioid agonist, fentanyl (FEN), in rat plasma was developed. The assay procedure involved chromatographic separation using a ZIC-HILIC SeQUANT column (250 mm × 4.6 mm, i.d., 5 μm) and a mobile phase of acetonitrile and acetate buffer (pH 3.4, 20mM) of ratio (=65:35, v/v) at a flow rate of 1.2 mL/min and detection wavelength of 201 nm. Plasma sample (100 μL) pretreatment was based on simple deprotienization by acetonitrile spiked with clonidine as an internal standard (I.S.) of 20 ng/mL followed by extraction with tert-butyl methyl ether and centrifugation. The organic layer was evaporated under N(2) gas and reconstituted with 100 μL of acetate buffer (pH 3.4, 20mM), and 50-μL portions of reconstituted sample were injected onto the column. Sample analysis including sample pretreatment was achieved within 35 min. Calibration curve was linear (r ≥ 0.998) from 5 to 100 ng/mL. Both intra- and inter-day assay precisions that are presented through RSD were lower than 12.6% for intra-day and lower than 12.0% for inter-day assessment. Limit of detection was 0.8 ng/mL at S/N of 3. This method was omitting the use of expensive solid phase extraction and time consuming liquid extraction procedures. Moreover, the present method was successfully applied to study pharmacokinetic parameters of FEN after intraperitoneal administration to male Wistar rat. Pharmacokinetic parameters estimated by using moment analysis were T(1/2) 198.3 ± 44.7 min, T(max) 28.3 ± 2.9 min and AUC(0-180) 15.6 ± 2.9(× 10(2))ngmin/mL.  相似文献   

12.
建立HPLC同时测定伤科黄水中6个生物碱的方法。采用XBridge C18色谱柱(3. 5μm,2. 1 mm×100 mm),柱温35℃,测定波长280 nm,以0. 1%磷酸溶液(每100 mL加0. 3 g十二烷基苯磺酸钠)(A)-乙腈-水-磷酸-十二烷基苯磺酸钠(90∶10∶0. 1∶0. 3)(B)为流动相,进行梯度洗脱(0~30 min,B%:35~70; 30~31 min,B%:70~35; 31~40min,B%:35)。经方法学验证,黄柏碱、药根碱、表小檗碱、黄连碱、巴马汀、小檗碱等共6个生物碱分离情况良好,在测定时间段内无明显干扰峰;加样回收率均在95%~115%之间,RSD%均小于5%;精密度RSD%均小于5%;在测定浓度范围内(1~50μg/mL)线性关系良好,相关系数(R^2)大于0. 999。3个不同批次供试品的测定结果较一致。本研究建立的HPLC分析方法可用于同时测定伤科黄水中6个生物碱的含量。  相似文献   

13.
HPLC测定中药百合中2个甾体皂苷的含量   总被引:1,自引:0,他引:1  
首次建立百合中2个甾体皂苷的高效液相色谱含量测定方法.采用Shim-pack VP-ODS (4.6 mm×250mm,5μm)色谱柱,甲醇-水梯度洗脱,流速1.0 mL/min,检测波长205 nm.化合物1和2的线性范围及相关系数分别为:1.03 ~10.30ug(r=0.9998)和1.26~12.56 μg(r=0.9999);平均回收率分别为100.59%和99.97%.该方法操作简便,结果准确,重现性好,可用于百合中2个甾体皂苷的含量测定,为建立和完善中药百合药材的质量控制方法提供依据.  相似文献   

14.
A method for a high frequency and direct in vitro bud regeneration of a woody species, the trifoliate orange (Poncirus trifoliata L. Raf), was designed. Transverse thin cell layer (tTCL) explants excised from the stem internodes of 1-year-old young plants of P. trifoliata regenerated bud in vitro on a medium containing 6-benzylaminopurine (BAP 1-50 μM) and N-phenyl-N'-1,2,3-thidiazol-5-ylurea (thidiazuron, TDZ) (0.1–10 μM). The optimal concentrations for bud induction were 25 μM BAP and 1 μM TDZ leading to 87 and 72 % of responsive tTCLs and 24 and 15 buds per tTCL, respectively. A higher percentage of responsive tTCLs and a higher frequency of bud regeneration were obtained with BAP and TDZ combined. With a combination of 10 μM BAP and 1 μM TDZ, 90 % of responsive tTCLs forming 37 buds per tTCL were obtained. Shoot elongation occurred after a transfer onto a medium containing 1 μM GA3. Rooting of individual shoot was induced using 5 μM NAA. One hundred per cent of rooted shoots developed normally after transfer to the greenhouse; no phenotype variation was observed. High numbers of regenerated viable plants can be produced directly without callus formation from tTCL after 9 weeks of culture.  相似文献   

15.
We developed a simple and sensitive method for the simultaneous detection of imatinib mesylate (IM) and its active metabolite, N-desmethyl imatinib (M1), in human serum samples. Separation was successfully achieved using an Agilent(?) ZORBAX Eclipse plus C(18) reversed phase column (50 mm × 2.1 mm, i.d.; 1.8 μm) under isocratic mobile phase conditions consisting of acetonitrile: 0.02 M potassium dihydrogen phosphate with 0.2% triethylamine at pH 3 (25:75, v/v) and ultra-violet detection was achieved at 235 nm. Extraction of the target compounds was completed using 100% cold acetonitrile. Good linearities (r(2)>0.99) for both IM and M1 were achieved for the concentration ranges of 50-1800 ng/mL and 50-360 ng/mL, respectively. The detection limits were 20 ng/mL and 10 ng/mL for M1 and IM, respectively. The intra- and inter-day precisions were less than 1% with percent recoveries of more than 90%. The method was successfully applied to calculate the pharmacokinetic parameters of chronic myeloid leukemia patients receiving imatinib. The method is suitable to be routinely applied for determination of IM and M1 in serum.  相似文献   

16.
A novel isocratic reversed-phase high performance liquid-chromatography/ultraviolet detection method for simultaneous determination of cefdinir and cefixime in human plasma was developed and validated after optimization of various chromatographic conditions and other experimental parameters. Sample preparation based on a simple extraction procedure consisting of deproteination and extraction with 3 parts of 6% trichloroacetic acid aqueous solution followed by volume make up with the aqueous component of the mobile phase obtained best recoveries of the two analytes. Samples were separated on a Supelco Discovery HS C(18) (150 mm × 4.6 mm, 5 μm) analytical column protected by a Perkin Elmer C(18) (30 mm × 4.6 mm, 10 μm) guard cartridge. The mobile phase, methanol/acetonitrile (50/50, v/v):0.05% trifluoroacetic acid (19:81, v/v), operated at 50°C column oven temperature was pumped at a flow rate of 2.0 mL min(-1) and the column eluents were monitored at a wavelength of 285 nm. When Sample was injected into the Perkin Elmer high performance liquid-chromatography system through Rheodyne manual (or auto-sampler) injector equipped with 20 μL loop, separation was achieved within 4 min. The present method demonstrated acceptable values for selectivity, linearity within the expected concentration range (0.004-5.0 μg mL(-1); r(2)>0.999 for both analytes), recovery (>95% for cefdinir and >96% for cefixime), precision (%RSD<2.0 for cefdinir and <2.2 for cefixime), sensitivity (limit of detection: 1 ng mL(-1) and lower limit of quantification: 4 ng mL(-1) for both analytes), stability of solutions, and robustness. The method was efficiently applied to a pharmacokinetic study in healthy volunteers.  相似文献   

17.
褐飞虱Nilaparvata lugens Stl是我国重要的迁飞性水稻害虫,本文研究了金龟子绿僵菌Metarhizium anisopliae及其与dsRNA混合使用对褐飞虱的防治效果。绿僵菌悬浮液1.6×108孢子/m L至8×106孢子/m L对褐飞虱2龄、4龄和成虫进行喷药,发现1.6×107孢子/m L对各个虫态虫龄均有良好致死效果,并且成虫和4龄若虫均好于2龄若虫。在交配行为上来看,绿僵菌处理过的褐飞虱成虫活跃度非常低,从配对开始一直到交配结束的各个阶段都受到明显影响,处理组3 h的交配率只有3.70%,而对照组的交配率为24.44%。还把褐飞虱几丁质合成酶基因A的dsRNA与绿僵菌混合使用防治褐飞虱2龄和4龄若虫,结果表明0.5μg/μL ds CHSA与绿僵菌混合使用的防治效果最好,2龄若虫的死亡率为89.63%,4龄若虫的死亡率达到93.94%。而0.2μg/μL ds CHSA与绿僵菌的混合,对2龄和4龄若虫的致死率为65.56%-76.52%。研究结果为褐飞虱的生物防治提供了新的思路。  相似文献   

18.
A highly sensitive method for the detection of trace amount of clenbuterol based on gold nanoparticles (AuNPs) in the presence of melamine was described in this paper. Hydrogen-bonding interaction between clenbuterol and melamine resulted in the aggregation of AuNPs and a consequent color change of AuNPs from wine red to blue. The concentration of clenbuterol could be determined with naked eye or a UV-vis spectrometer. Results showed that the absorption ratio (A(670)/A(520)) was liner with the logarithm of clenbuterol concentration in the range of 2.8×10(-10) to 2.8×10(-7)M and 2.8×10(-7) to 1.4×10(-6)M with linear coefficients of 0.996 and 0.993, respectively. The detection limit was 2.8×10(-11)M (S/N=3), which was much lower than most existing methods. The coexisting substances including dl-epinephrine, phenylalamine, tryptohan, alamine, uric acid, glycine, glycerol, glucose, MgCl(2), CaCl(2) and NaCl did not affect the determination of clenbuterol. The proposed method could be successfully applied to the determination of clenbuterol in human urine.  相似文献   

19.
Sophora alopecuroides lectin (SAL), a novel lectin from the seeds of Sophora alopecuroides, was purified by ion-exchange chromatography on diethylaminoethyl (DEAE)- and carboxymethyl (CM)-Sepharose columns, followed by gel filtration on a Sephadex 75 10/300 GL column. SAL was found to be a monomer of 39916.3 Da, as determined by tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography (HPLC). The N-terminal 10-amino acid sequence of SAL, KPWALSFSFG, resembles those of other legume lectins. SAL exhibits hemagglutinating activity against rabbit erythrocytes at 11.9 μg/ml. Its hemagglutinating activity is stable in the pH range 7-11 and in the temperature range 30-90°C, and is stimulated by Mn(2+). The hemagglutinating activity of SAL is most potently inhibited by 50-mM d-galactose. SAL suppresses mycelial growth in Penicillium digitatum and Alternaria alternata; the IC(50) of the antifungal activity toward P. digitatum and A. alternata were found to be 3.125 and 3.338 μM, respectively. SAL suppresses the proliferation of human cervical cancer cells (HeLa) at an IC(50) of 6.25 μM (P< 0.05). But it has no inhibiting effect on bacteria. This is the first report of a lectin from seeds of S. alopecuroides.  相似文献   

20.
This paper describes the preparation of a biomimetic Langmuir-Blodgett film of tyrosinase incorporated in a lipidic layer and the use of lutetium bisphthalocyanine as an electron mediator for the voltammetric detection of phenol derivatives, which include one monophenol (vanillic acid), two diphenols (catechol and caffeic acid) and two triphenols (gallic acid and pyrogallol). The first redox process of the voltammetric responses is associated with the reduction of the enzymatically formed o-quinone and is favoured by the lutetium bisphthalocyanine because significant signal amplification is observed, while the second is associated with the electrochemical oxidation of the antioxidant and occurs at lower potentials in the presence of an electron mediator. The biosensor shows low detection limit (1.98×10(-6)-27.49×10(-6) M), good reproducibility, and high affinity to antioxidants (K(M) in the range of 62.31-144.87 μM). The excellent functionality of the enzyme obtained using a biomimetic immobilisation method, the selectivity afforded by enzyme catalysis, the signal enhancement caused by the lutetium bisphthalocyanine mediator and the increased selectivity of the curves due to the occurrence of two redox processes make these sensors exceptionally suitable for the detection of phenolic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号