首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Glucocorticoids exert potent anti-inflammatory effects by repressing proinflammatory genes. We previously demonstrated that estrogens repress numerous proinflammatory genes in U2OS cells. The objective of this study was to determine if cross talk occurs between the glucocorticoid receptor (GR) and estrogen receptor (ER)α. The effects of dexamethasone (Dex) and estradiol on 23 proinflammatory genes were examined in human U2OS cells stably transfected with ERα or GR. Three classes of genes were regulated by ERα and/or GR. Thirteen genes were repressed by both estradiol and Dex (ER/GR-repressed genes). Five genes were repressed by ER (ER-only repressed genes), and another five genes were repressed by GR (GR-only repressed genes). To examine if cross talk occurs between ER and GR at ER/GR-repressed genes, U2OS-GR cells were infected with an adenovirus that expresses ERα. The ER antagonist, ICI 182780 (ICI), blocked Dex repression of ER/GR-repressed genes. ICI did not have any effect on the GR-only repressed genes or genes activated by Dex. These results demonstrate that ICI acts on subset of proinflammatory genes in the presence of ERα but not on GR-activated genes. ICI recruited ERα to the IL-8 promoter but did not prevent Dex recruitment of GR. ICI antagonized Dex repression of the TNF response element by blocking the recruitment of nuclear coactivator 2. These findings indicate that the ICI-ERα complex blocks Dex-mediated repression by interfering with nuclear coactivator 2 recruitment to GR. Our results suggest that it might be possible to exploit ER and GR cross talk for glucocorticoid therapies using drugs that interact with ERs.  相似文献   

2.
As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved.  相似文献   

3.
4.
5.
We investigated whether blocking of monocyte chemoattractant-1 (MCP-1) function would inhibit recruitment of tumor-associated macrophages (TAMs) and prevent tumor angiogenesis and tumor growth of human malignant melanoma. B16-F1 melanoma cells were implanted onto the back of C57BL/6 mice (Day 0). At Day 7, a dominant negative MCP-1 mutant (7ND) gene was transfected in the thigh muscle to make overexpressed 7ND protein secreted into systemic circulation. 7ND treatment inhibited TAM recruitment and partially reduced tumor angiogenesis and tumor growth. Also, 7ND treatment attenuated inductions of tumor necrosis factor-α (TNFα), interleukin-1α (IL-1α), and vascular endothelial growth factor (VEGF) in the stroma and tumor. Melanoma cells expressed not only MCP-1 but also its receptor CCR2. Accordingly, it was suggested that MCP-1 would enhance tumor angiogenesis and early tumor growth in the early stages by inducing TNFα, IL-1α, and VEGF through TAM recruitment and probably the direct autocrine/paracrine effects on melanoma cells.  相似文献   

6.
7.
Whereas neutrophils are the main phagocytic leukocytes, monocytes and macrophages are actively involved in immunomodulation after infection. Recent studies have demonstrated that neutrophil function is impaired by the state of negative energy balance around parturition, and that cows that develop uterine disease have a greater degree of negative energy balance than healthy cows. The objectives of this study were to compare monocyte gene expression and protein secretion of selected cytokines from calving to 42 d after calving in Holstein cows that did or did not develop uterine disease. Real time quantitative RT-PCR (Tumor necrosis factor-α (TNFα), Interleukin (IL)-1β, IL-6, IL-8 and IL-10) and ELISA (TNFα, IL-1β and IL-8) were used to evaluate cytokine response following in vitro stimulation of blood-derived monocytes with irradiated E. coli. Relative to unstimulated cells, E. coli-stimulated monocytes from cows with metritis had lower gene expression of key pro-inflammatory cytokines than healthy cows from calving to 14 d after calving (TNFα at 0, 7, and 14 d after calving, IL-1β and IL-6 at 7 and 14 d after calving; P < 0.05). There were no significant differences between groups for expression of IL-8 or the anti-inflammatory cytokine IL-10. This was due, in part, to higher gene expression in unstimulated monocytes (TNFα, IL-1β, IL-6 and IL-10) in early lactation from cows with metritis. Expression of mRNA in stimulated cells (relative to housekeeping genes) was lower for TNFα (7 and 14 d postpartum) and for IL-10 (7 and 14 d postpartum) in cows with metritis. Concentration of TNFα was lower in the culture medium of E. coli-stimulated monocytes from cows with metritis than healthy cows at calving and 7 and 21 d after calving (P < 0.05). Circulating cytokine concentrations were not different between groups for IL-8 and were below the limits of detection for TNFα and IL-1β. Cytokine gene expression and production were similar between healthy cows and cows that developed endometritis, diagnosed cytologically at 42 d after calving. We concluded that altered levels of expression and production of pro-inflammatory cytokines postpartum could contribute to impaired inflammatory response and predispose cows to development of metritis.  相似文献   

8.
9.
《Cytokine》2015,74(2):326-334
Cutaneous lupus erythematosus (CLE) is an inflammatory disease with a broad range of cutaneous manifestations that may be accompanied by systemic symptoms. The pathogenesis of CLE is complex, multifactorial and incompletely defined. Below we review the current understanding of the cytokines involved in these processes. Ultraviolet (UV) light plays a central role in the pathogenesis of CLE, triggering keratinocyte apoptosis, transport of nucleoprotein autoantigens to the keratinocyte cell surface and the release of inflammatory cytokines (including interferons (IFNs), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, IL-10 and IL-17). Increased IFN, particularly type I IFN, is central to the development of CLE lesions. In CLE, type I IFN is produced in response to nuclear antigens, immune complexes and UV light. Type I IFN increases leukocyte recruitment to the skin via inflammatory cytokines, chemokines, and adhesion molecules, thereby inducing a cycle of cutaneous inflammation. Increased TNFα in CLE may also cause inflammation. However, decreasing TNFα with an anti-TNFα agent can induce CLE-like lesions. TNFα regulates B cells, increases the production of inflammatory molecules and inhibits the production of IFN-α. An increase in the inflammatory cytokines IL-1, IL-6, IL-10, IL-17 and IL-18 and a decrease in the anti-inflammatory cytokine IL-12 also act to amplify inflammation in CLE. Specific gene mutations may increase the levels of these inflammatory cytokines in some CLE patients. New drugs targeting various aspects of these cytokine pathways are being developed to treat CLE and systemic lupus erythematosus (SLE).  相似文献   

10.
11.
12.
We tested the contribution of four staphylococcal components – PSM-α, PSM-β, δ-toxin, and PVL – in triggering macrophage secretion of tumor necrosis factor (TNF) and interleukins 6 (IL-6) and 12 (IL-12) by two prominent, circulating strains of community-associated, methicillin-resistant Staphylococcus aureus (CA-MRSA): LAC, USA300; MW2, USA400. RAW 264.7 murine macrophages were stimulated with live, antibiotic-exposed bacteria, and cytokine secretion was quantitated in supernatants. Deletion of PSM-α expression in LAC led to >50% reduction in macrophage TNF and IL-6 secretion and a 20% reduction in IL-12 secretion, while PSM-α deletion in MW2 did not significantly reduce macrophage TNF secretion but resulted in a 15–20% reduction in IL-6 and IL-12 secretion. Deletion of δ-toxin in either strain led to more than 50% reduction in macrophage IL-6 secretion and smaller reductions in macrophage TNF and IL-12 secretion (8–25%). Our data implicate both PSM-α and δ-toxin in stimulating macrophage cytokine responses to CA-MRSA bacteria.  相似文献   

13.
The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNF receptor (TNFR) 2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined interleukin (IL) 6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα-induced TNFR2 were decreased by pharmacologic STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα-induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a -1,578 STAT response element in the TNFR2 promoter but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Overexpression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the -1,578 STAT response element. SOCS3 overexpression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells overexpressing TNFR2. Collectively, these studies show that IL-6- and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3 and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3.  相似文献   

14.
15.
16.
ASB proteins are the specificity subunits of cullin5-RING E3 ubiquitin ligases (CRL5) that play roles in ubiquitin-mediated protein degradation. However, how their activity is regulated remains poorly understood. Here, we unravel a novel mechanism of regulation of a CRL5 through phosphorylation of its specificity subunit ASB2α. Indeed, using mass spectrometry, we showed for the first time that ASB2α is phosphorylated and that phosphorylation of serine-323 (Ser-323) of ASB2α is crucial for the targeting of the actin-binding protein filamin A (FLNa) to degradation. Mutation of ASB2α Ser-323 to Ala had no effect on intrinsic E3 ubiquitin ligase activity of ASB2α but abolished the ability of ASB2α to induce degradation of FLNa. In contrast, the ASB2α Ser-323 to Asp phosphomimetic mutant induced acute degradation of FLNa. Moreover, inhibition of the extracellular signal-regulated kinases 1 and 2 (Erk1/2) activity reduced ASB2α-mediated FLNa degradation. We further showed that the subcellular localization of ASB2α to actin-rich structures is dependent on ASB2α Ser-323 phosphorylation and propose that the interaction with FLNa depends on the electrostatic potential redistribution induced by the Ser-323 phosphate group. Taken together, these data unravel an important mechanism by which ASB2α-mediated FLNa degradation can be regulated.  相似文献   

17.
As interleukin (IL)-13 and IL-4 play a major role in various diseases including asthma, allergy, and malignancies, it is desirable to generate a molecule that blocks the effects of both cytokines. We previously generated a human IL-13 mutant (IL-13E13K), which is a powerful antagonist of IL-13, blocking the biological activities of IL-13. We now show that IL-13E13K also competitively inhibits signaling and biological activities of IL-4 through type II and partially through type III IL-4 receptor (R) system. IL-13E13K completely blocked the IL-4-induced phosphorylation of STAT6 and IL-4-dependent protein synthesis in cells expressing type II and partially type III IL-4R but not type I IL- 4R. Consistent with the inhibition of biological activities, IL-13E13K inhibited IL-4 binding to type II IL-4R-expressing cells but not to type I IL-4R-expressing cells. The inhibition efficiency of IL-4 binding by IL-13E13K was relatively lower compared to wtIL-13 even though IL-13E13K bound to IL-13Ralpha1 positive cells with a similar affinity to wtIL-13. These results indicate that Glu13 in IL-13 associates with IL-4Ralpha, and mutation to lysine decreases its binding ability to IL-4Ralpha chain. IL-13E13K binds to IL- 13Ralpha1, which is shared by both IL-13R and IL-4R systems. Consequently, IL-13E13K inhibits IL-4 binding to these cells and prevents heterodimer formation between IL-13Ralpha1 and IL-4Ralpha chains. This interference by IL-13E13K blocks the biological activities of not only IL-13 but also partially of IL-4. Thus, IL-13E13K may be a useful agent for the treatment of diseases such as asthma, allergic rhinitis, and cancer, which are dependent on signaling through both IL-4 and IL-13 receptors.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号