首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonobese diabetic (NOD) mice spontaneously develop diabetes, an auto-immune disease characterized by the destruction of insulin-secreting beta-cells by autoreactive T cells. Defects in development and/or functions of dendritic cells (DC) might be critical in eliciting the auto-immune reaction to beta cells in this model. In this paper, DC differentiation in NOD mice was investigated in vitro using bone marrow-derived progenitors (BM-DC) in the presence of GM-CSF and IL-4 or spleen-derived progenitors in the presence of GM-CSF and early acting cytokines such as Flt-3L and IL-6 (SPL-DC). In both culture systems, the absolute number of NOD DC generated was strongly reduced as compared to control strains. In addition, both BM-DC and SPL-DC from NOD mice show defective differentiation into mature DC in conventional culture conditions as indicated by low expression of MHC class II and CD80 molecules among CD11c positive cells and low capacity to stimulate allogeneic T cells. However, DC achieved full maturation when exposed to LPS, except for MHC class II expression that remained decreased. Ex vivo analysis confirmed an unusual phenotype of NOD DC. Both sets of results are thus consistent with a specific defect of DC maturation in these mice.  相似文献   

2.
Dendritic cells (DC) are specialized antigen-presenting cells involved in T cell-mediated immune responses. Differentiation and functional maturation of the DC are now known to be regulated by various cytokines, including TGF-β1. The experiments of this study examined the effect of other cytokines, such as IL-4, IL-10 and IL-6, on the differentiation and maturation of bone marrow (BM)-derived DC (BM-DC) and epidermal Langerhans cells (LC). When IL-6 or IL-10 was added to cultures of BM cells in the presence of GM-CSF, both cytokines, as in the case of TGF-β1, suppressed the maturation of DC in terms of the expression of adhesion and costimulatory molecules and T cell-stimulating activity. In contrast, IL-4 was not suppressive but rather supportive for the differentiation of DC. However, these suppressive cytokines hardly counteracted the maturation-inducing activity of TNF-α when added to cultures of immature DC. In addition, they appeared to block the overmaturation of DC, which is characterized by a loss of MHC class II molecules. Regarding LC maturation in epidermal cell cultures, IL-6 and IL-10 were inhibitory for the expression of CD86 and CD80 in a dose-dependent fashion. Unlike BM-DC, LC maturation was slightly enhanced by TGF-β1. The protein antigen-presentation by LC to Th1 clone was not affected by IL-6, but slightly reduced by IL-10. These results suggest that each cytokine contributes to regulate the differentiation and maturation of DC at a different developmental stage.  相似文献   

3.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

4.
Uterine dendritic cells (DCs) are critical for activating the T cell response mediating maternal immune tolerance of the semiallogeneic fetus. GM-CSF (CSF2), a known regulator of DCs, is synthesized by uterine epithelial cells during induction of tolerance in early pregnancy. To investigate the role of GM-CSF in regulating uterine DCs and macrophages, Csf2-null mutant and wild-type mice were evaluated at estrus, and in the periconceptual and peri-implantation periods. Immunohistochemistry showed no effect of GM-CSF deficiency on numbers of uterine CD11c(+) cells and F4/80(+) macrophages at estrus or on days 0.5 and 3.5 postcoitum, but MHC class II(+) and class A scavenger receptor(+) cells were fewer. Flow cytometry revealed reduced CD80 and CD86 expression by uterine CD11c(+) cells and reduced MHC class II in both CD11c(+) and F4/80(+) cells from GM-CSF-deficient mice. CD80 and CD86 were induced in Csf2(-/-) uterine CD11c(+) cells by culture with GM-CSF. Substantially reduced ability to activate both CD4(+) and CD8(+) T cells in vivo was evident after delivery of OVA Ag by mating with Act-mOVA males or transcervical administration of OVA peptides. This study shows that GM-CSF regulates the efficiency with which uterine DCs and macrophages activate T cells, and it is essential for optimal MHC class II- and class I-mediated indirect presentation of reproductive Ags. Insufficient GM-CSF may impair generation of T cell-mediated immune tolerance at the outset of pregnancy and may contribute to the altered DC profile and dysregulated T cell tolerance evident in infertility, miscarriage, and preeclampsia.  相似文献   

5.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

6.
We isolated dendritic cells (DC) from lymphoid organs of mice bearing a transgene for a membrane-bound form of the model protein hen egg white lysozyme (HEL). DC from the spleen had a lower representation of costimulatory molecules and class II MHC molecules than those isolated from lymph nodes and thymi. Splenic DC were capable of further maturation by in vivo treatment of mice with LPS. The immature DC from spleen processed HEL and displayed the chemically dominant epitope as evidenced by FACS analysis. These immature DC also presented this epitope to CD4(+) T cells. Splenic DC from another transgenic mouse (ML-5) containing serum HEL also showed the ability to process and present Ag despite low levels of circulating HEL. In vitro-derived DC from the bone marrow (bone marrow-derived DC) of mHEL mice also displayed immature to mature features and in both cases displayed HEL peptides as well as SDS-stable MHC class II molecules. Immature bone marrow-derived DC also processed exogenous HEL. We conclude that the DC sets normally found in tissue show a scale of maturation features but even the most immature process and present peptides by MHC class II molecules.  相似文献   

7.
The developmental pathways and differentiation relationship of dendritic cell (DC) subsets remain unclear. We report that murine CD11c(+)MHC II(-) bone marrow cells, which are immediate DC precursors of CD8 alpha(+), CD8 alpha(-), and B220(+) DC in vivo, can be separated into B220(+) and B220(-) DC precursor subpopulations. Purified B220(-) DC precursors expand, and generate exclusively mature CD11c(+)CD11b(+)B220(-) DC in vitro and after adoptive transfer. B220(+) DC precursors, which resemble plasmacytoid pre-DC, have a lower proliferative potential than B220(-) DC precursors and generate both CD11b(-) B220(+) and CD11b(+)B220(-) DC populations. Both DC precursor populations can give rise to CD8 alpha(+) and CD8 alpha(-) DC subtypes. Our findings indicate that CD11c(+)MHC II(-)B220(+) and CD11c(+)MHC II(-)B220(-) bone marrow cells are distinct DC lineage-restricted precursors.  相似文献   

8.
Flt3 ligand (FL) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are important growth factors for dendritic cells (DC). Substantial numbers of DC can be generated in vivo following the administration of either factor. We sought to extend our knowledge of the functional properties of these cells including their ability to prime na?ve CD8(+) T cells. In addition, we compared the nature of the DC generated in vivo with the single cytokines to those generated with the combination of FL+polyethylene glycol-modified GM-CSF (pGM-CSF). Treatment with FL+pGM-CSF yielded greater numbers of both CD11b(low) and CD11b(high) DC than with either cytokine alone, and these DC were more efficient at antigen (Ag) capture. The FL+pGM-CSF-generated CD11b(low) DC lacked expression of CD8alpha. Following treatment with LPS in vivo, all DC subsets upregulated CD40, CD80, CD86, and MHC class II expression, but surprisingly Ag capture was not downregulated and some DC subsets retained expression of intracellular MHC class II vesicles. Thus, even after activation in vivo with LPS, DC retained Ag capture properties of immature DC, and Ag presentation/costimulation properties of mature DC. Though all DC subsets stimulated CD4(+) T cell proliferation equivalently, FL-generated DC were more efficient at priming Ag-specific CD8(+) cytolytic T cells than DC generated with either pGM-CSF alone or FL+pGM-CSF, and CD11b(high) DC were more efficient at priming CD8(+) T cells than CD11b(low) DC.  相似文献   

9.
Sex biases in autoimmunity and infection suggest that steroid sex hormones directly modulate immune cells. We show in this study that 17-beta-estradiol (E2) promotes the differentiation of functional dendritic cells (DC) from murine bone marrow precursor cells. Remarkably, ex vivo DC differentiation was inhibited in steroid hormone-deficient medium, and was restored by addition of physiological amounts of E2, but not dihydrotestosterone. DC differentiation was inhibited by the estrogen receptor (ER) antagonists ICI 182,780 and tamoxifen, and from ERalpha(-/-) bone marrow cells, indicating that E2 acted via ERs. E2 addition was most effective in promoting DC differentiation immediately ex vivo, but did not increase DC proliferation. E2 treatment specifically promoted differentiation of a CD11c(+) CD11b(int) DC population that displayed high levels of cell surface MHC class II and CD86, suggesting that E2 could augment numbers of potent APC. DC that differentiated in E2-supplemented medium were fully functional in their capability to mediate presentation of self and foreign Ags and stimulate the proliferation of naive CD4(+) T cells. The requirement for estrogen during DC differentiation suggests a mechanism by which E2 levels in peripheral tissues might modulate both the number and functional capabilities of DC in vivo, thereby influencing immune responses.  相似文献   

10.
Differentiation of CD34(+) haematopoietic stem cells into functional dendritic cells (DC) was investigated using the mAb CMRF-44 and other mAb against DC-associated markers. GM-CSF mobilized peripheral blood stem cells were obtained from healthy donors by leukapheresis. CD34(+) cells were purified using CD34(+)-positive selection,and subsequent immunomagnetic depletion of CD14 and CD2 cells. CD34(+) cells were cultured in medium supplemented with one or more of GM-CSF,TNF-alpha, IL-4 or IL-6. CMRF-44 Ag expression was monitored by flow cytometry, and DC function by allogeneic MLR and tetanus toxoid(TT) presentation assays. CD34(+) cells quickly acquired the CMRF-44 Ag when cultured in the presence of TNF-alpha.By day 3, more than 50% of the cells were double-positive for CD34 and CMRF-44. CD34 expression was gradually lost, so that by day 9, the majority of the cells were CD34(-)/CMRF-44(+).GM-CSF and TNF-alpha also induced CD40 expression, and up-regulation of CD54 and MHC class II on CD34(+) cells; their expression was correlated to the CMRF-44 Ag. Day 3 CD34(+)/CMRF-44(+) cells,but not CD34(+)/CMRF-44(-) cells, become potent APC when cultured further with GM-CSF plus TNF-alpha. These CMRF-44(+) cells were potent inducers of Th1-type immune response in the primary allogeneic MLR and present TT to autologous CD4(+) T cells. TNF-alpha alone is sufficient to induce CMRF-44 expression on CD34(+) cells, but in combination with GM-CSF expands the CMRF-44(+) population. CMRF-44 expression correlates with DC function and may be a useful early marker for commitment of CD34(+) cells to the DC differentiation pathway.  相似文献   

11.
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappa B inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappa B inhibitor, signal phosphorylation of TCR zeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappa B determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappa B(-)CD40(-)class II(+) DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to "prime" or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.  相似文献   

12.
The immune effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) are mainly mediated through dendritic cells (DCs). In vitro, 1,25(OH)(2)D(3) treatment renders murine bone marrow (BM)-derived DCs more tolerogenic, indirectly altering behavior and fate of T lymphocytes. In vivo, treatment with 1,25(OH)(2)D(3) or its analogs prevents diabetes in NOD mice. The aim of this study was to investigate the effects of the 1,25(OH)(2)D(3)-analog TX527 on the expression of antigen-presenting and costimulatory/migratory molecules on BM-derived DCs from NOD mice. After culture with 20 ng/ml GM-CSF + 20 ng/ml IL-4 (8 days) followed by 1000 ng/ml LPS + 100 U/ml IFN-gamma (2 days), with or without 10(-8)M TX527, cells were counted and analyzed by FACS for MHC II, CD86, CD40 and CD54 expression within the CD11c(+) DC population. Upon TX527 treatment, cell recovery was significantly reduced whereas the CD11c(+) DC fraction remained constant. On CD11c(+) DCs, MHC II, CD86 and CD54 were significantly down-regulated and CD40 was twofold upregulated. Globally, BM-derived DCs from NOD mice become more tolerogenic upon TX527 treatment, confirming the effects of 1,25(OH)(2)D(3) on murine DCs and possibly explaining the protective effects of 1,25(OH)(2)D(3) and its analogs from diabetes in NOD mice.  相似文献   

13.
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.  相似文献   

14.
T cell development is determined by positive and negative selection events. An intriguing question is how signals through the TCR can induce thymocyte survival and maturation in some and programmed cell death in other thymocytes. This paradox can be explained by the hypothesis that different thymic cell types expressing self-MHC/peptide ligands mediate either positive or negative selection events. Using transgenic mice that express MHC class I (MHC-I) selectively on DC, we demonstrate a compartmentalization of thymic functions and reveal that DC induce CTL tolerance to MHC-I-positive hemopoietic targets in vivo. However, in normal and bone marrow chimeric mice, MHC-I+ DC are sufficient to positively select neither MHC-Ib (H2-M3)- nor MHC-Ia (H2-K)-restricted CD8+ T cells. Thus, thymic DC are specialized in tolerance induction, but cannot positively select the vast majority of MHC-I-restricted CD8+ T cells.  相似文献   

15.
Maturation of dendritic cells (DC) is critical to their development into potent APCs. Upon maturation, DC up-regulate the expression of MHC class II as well as costimulatory and adhesion molecules, all of which are important in Ag presentation. In addition, they undergo structural changes characterized by the expression of numerous long dendrites. Fascin is an actin-bundling protein that has been reported to be important for the development of dendrites. In this study, we evaluated fascin expression and function during DC maturation into potent APC. In vitro, treatment of bone marrow-derived DC (BM-DC) with GM-CSF resulted in increased levels of fascin expression. This increase correlated directly with an increase in MHC class II and B7-2 expression. Fascin expression was decreased by the addition of TGF-ss and increased by the addition TNF-alpha to the culture. These cytokines suppress or enhance DC maturation, respectively. Increased levels of fascin expression were found to correlate with increased APC activity in a one-way MLR. Specific inhibition of fascin expression, using antisense oligonucleotides, markedly reduced this APC allostimulatory activity. These data demonstrate that fascin expression correlates with DC maturation into APC, and it plays a significant role in the ability of DC to function as APC. This observation is the first evidence linking fascin-mediated dendrite formation with the APC activity of DC.  相似文献   

16.
Dendritic cells (DC) and myeloid-derived suppressor cells (MDSC) are important cells involved in immune response. DC can be generated from mouse bone marrow (BM) in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. Recent studies have revealed that combined treatment of bone marrow MDSC with LPS plus IFN-γ inhibited the DC development but enhanced MDSC functions, such as NO release and T cell suppression. In our study, bone marrow precursor cells cultures in GM-CSF and IL-4 were treated with poly(I:C) through the culture, Gr1(+)CD11b(+) cells with MDSC functions, such as NO release and T cell suppression were accumulated in the culture system. Then the similar phenomenon was observed in the vesicular stomatitis virus infection in vivo. In conclusion, we demonstrated that the bone marrow precursor cells in the presence of GM-CSF and IL-4 can differentiate into MDSC, which is dependent on the dynamic of interaction with poly(I:C).  相似文献   

17.
The development of Ag-presenting functions by murine dendritic cells (DCs) of the CD8(+) DC lineage was studied using a Flt-3 ligand stimulated bone-marrow culture system. Although newly formed DCs of this lineage are capable of Ag uptake and efficient presentation to T cells on MHC class II, they initially lack the ability to cross-present exogenous Ags on MHC class I. Cross-presentation capacity is acquired as a subsequent maturation step, promoted by cytokines such as GM-CSF. The development of cross-presentation capacity by the DCs in these cultures may be monitored by the parallel development of DC surface expression of CD103. However, the expression of CD103 and cross-presentation capacity are not always linked; therefore, CD103 is not an essential part of the cross-presentation machinery. These results explain the considerable variability in CD103 expression by CD8(+) DCs as well as the findings that not all DCs of this lineage are capable of cross-presentation.  相似文献   

18.
We investigated differentiation of CD4 T cells responding to Ag presented by bone marrow-derived dendritic cells (DC) in association with MHC class II (MHC II) molecules. Peptides encapsulated in liposomes opsonized by IgG were taken up by endocytosis. MHC II-peptide-specific T cells responding to this Ag were polarized to a Th1 cytokine profile in a CD40-, CD28-, MyD88-, and IL-12-dependent manner. Th2 responses were obtained from the same transgenic T cell population exposed to the same DC on which MHC-peptide complexes had dispersed for 48 h following uptake of FcR-targeted liposomes. DC that took up the same FcR-targeted liposomes and then were exposed to methyl-beta-cyclodextrin, which chelates cholesterol and dissociates lipid microdomains, also stimulated Th2 differentiation. Incubation of T cells with DC incubated with peptides directly binding to MHC II resulted in Th2 responses, whether or not the DC were coincubated with opsonized liposomes as a maturation stimulus. CD4 Th1 polarization thus appears to depend on MHC II-peptide complex clustering in DC lipid microdomains and the time between peptide loading and T cell encounter.  相似文献   

19.
Statins are a group of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors which are most effective as lipid lowering agents, and are currently extensively used clinically. Recently, it was also shown that statins affect the immune response. We investigated the effects of lovastatin on the maturation and functional changes of bone marrow-derived dendritic cells (BM-DC). Lovastatin inhibited MHC class II and CD40 expression on DC in a dose-dependent manner, but had lesser effects on CD16, CD80, CD86, and CD11b expression. Nuclear extracts of lovastatin treated DC had decreased NF-kappaB DNA binding activity. Although antigen capture capacity of DC was not affected by lovastatin, the T-cell stimulatory activity of DC was inhibited. Lovastatin up-regulated DC pro-inflammatory cytokine production induced by LPS as measured by intracellular cytokine staining, ELISA and cDNA microarrays. Mevalonate, added in vitro, prevented these effects. These results indicate that lovastatin may inhibit BM-DC maturation and up-regulate cytokine production through a mevalonate dependent pathway, and may cause adverse effects on either innate or adaptive immunity.  相似文献   

20.
Dendritic cells (DC) undergo complex developmental changes during maturation. The MHC class II (MHC II) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC II chaperone Ii, and hence in the formation of MHC II-peptide complexes. We show that CyC is differentially expressed by mouse DC populations. CD8(+) DC, but not CD4(+) or CD4(-)CD8(-) DC, synthesize CyC, which accumulates in MHC II(+)Lamp(+) compartments. However, Ii processing and MHC II peptide loading proceeded similarly in all three DC populations. We then analyzed MHC II localization and Ag presentation in CD8(+) DC, bone marrow-derived DC, and spleen-derived DC lines, from CyC-deficient mice. The absence of CyC did not affect the expression, the subcellular distribution, or the formation of peptide-loaded MHC II complexes in any of these DC types, nor the efficiency of presentation of exogenous Ags. Therefore, CyC is neither necessary nor sufficient to control MHC II expression and Ag presentation in DC. Our results also show that CyC expression can differ markedly between closely related cell types, suggesting the existence of hitherto unrecognized mechanisms of control of CyC expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号