首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.  相似文献   

2.
Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tight junction organization using MKN28, a human gastric epithelial cell line that expresses claudin-3, claudin-4, claudin-7, zonula occludens (ZO)-1, and occludin, but not claudin-2 or claudin-5, as determined by immunoblot analysis and immunofluorescent staining. Aspirin (5 mM) treatment of MKN28 gastric epithelial monolayers significantly decreased transepithelial electrical resistance and increased dextran permeability. Both aspirin-mediated permeability and phosphorylation of p38 MAPK were significantly attenuated by SB-203580 (a p38 MAPK inhibitor) but not by U-0126 (a MEK1 inhibitor) or SP-600125 (a JNK inhibitor). Aspirin significantly decreased the quantity of claudin-7 protein produced by MKN28 cells but not the quantity of claudin-3, claudin-4, ZO-1, or occludin. The aspirin-induced decrease in claudin-7 protein was completely abolished by SB-203580 pretreatment. These results demonstrate, for the first time, that claudin-7 protein is important in aspirin-induced gastric barrier loss and that p38 MAPK activity mediates this epithelial barrier dysfunction. tight junction; p38 mitogen-activated protein kinase; permeability  相似文献   

3.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for IL-1beta-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1beta induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH(2)-terminal kinase (JNK; SP-600125). Consistently, IL-1beta-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1beta-induced VCAM-1 expression was significantly blocked by the specific NF-kappaB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1beta-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1beta exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-kappaB pathways is essential for IL-1beta-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in airway disease.  相似文献   

4.
Role of L-glutamine in the protection of intestinal epithelium from acetaldehyde-induced disruption of barrier function was evaluated in Caco-2 cell monolayer. L-Glutamine reduced the acetaldehyde-induced decrease in transepithelilal electrical resistance and increase in permeability to inulin and lipopolysaccharide in a time- and dose-dependent manner; d-glutamine, L-aspargine, L-arginine, L-lysine, or L-alanine produced no significant protection. The glutaminase inhibitor 6-diazo-5-oxo-L-norleucine failed to affect the L-glutamine-mediated protection of barrier function. L-Glutamine reduced the acetaldehyde-induced redistribution of occludin, zonula occludens-1 (ZO-1), E-cadherin, and beta-catenin from the intercellular junctions. Acetaldehyde dissociates occludin, ZO-1, E-cadherin, and beta-catenin from the actin cytoskeleton, and this effect was reduced by L-glutamine. L-Glutamine induced a rapid increase in the tyrosine phosphorylation of EGF receptor, and the protective effect of L-glutamine was prevented by AG1478, the EGF-receptor tyrosine kinase inhibitor. These results indicate that L-glutamine prevents acetaldehyde-induced disruption of the tight junction and increase in the paracellular permeability in Caco-2 cell monolayer by an EGF receptor-dependent mechanism.  相似文献   

5.
Acetaldehyde, a toxic metabolite of ethanol oxidation, is suggested to play a role in the increased risk for gastrointestinal cancers in alcoholics. In the present study, the effect of acetaldehyde on tyrosine phosphorylation, immunofluorescence localization, and detergent-insoluble fractions of the tight junction and the adherens junction proteins was determined in the human colonic mucosa. The role of EGF and L-glutamine in prevention of acetaldehyde-induced effects was also evaluated. Acetaldehyde reduced the protein tyrosine phosphatase activity, thereby increasing the tyrosine phosphorylation of occludin, E-cadherin, and beta-catenin. The levels of occludin, zonula occludens-1, E-cadherin, and beta-catenin in detergent-insoluble fractions were reduced by acetaldehyde, while it increased their levels in detergent-soluble fractions. Pretreatment with EGF or L-glutamine prevented acetaldehyde-induced protein tyrosine phosphorylation, redistribution from intercellular junctions, and reduction in the levels of detergent-insoluble fractions of occludin, zonula occludens-1, E-cadherin, and beta-catenin. These results demonstrate that acetaldehyde induces tyrosine phosphorylation and disrupts tight junction and adherens junction in human colonic mucosa, which can be prevented by EGF and glutamine.  相似文献   

6.
Acetaldehyde-induced cytotoxicity is an important factor in pathogenesis of alcohol-related diseases; however, the mechanism of this toxicity is unknown. We recently showed that acetaldehyde increases epithelial paracellular permeability. We asked whether protein tyrosine phosphorylation via modulation of tyrosine kinases and/or PTPases is a mechanism involved in acetaldehyde-induced disruption of the tight junctions in the Caco-2 cell monolayer. Immunofluorescence localization of occludin and ZO-1 showed disruption of the tight junctions in acetaldehyde-treated cell monolayer. Administration of genistein prevented acetaldehyde-induced permeability. Acetaldehyde increased tyrosine phosphorylation of three clusters of proteins with molecular masses of 30-50, 60-90, and 110-150 kDa; three of these proteins were ZO-1, E-cadherin, and beta-catenin. Acetaldehyde reduced PTPase activity in plasma membrane and soluble fractions, whereas tyrosine kinase activity remained unaffected. Treatment with acetaldehyde resulted in a 97% loss of protein tyrosine phosphatase (PTP)1B activity and a partial reduction of PTP1C and PTP1D activities. These results strongly suggest that acetaldehyde inhibits PTPases to increase protein tyrosine phosphorylation, which may result in disruption of the tight junctions.  相似文献   

7.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

8.
BackgroundDisruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury.MethodsWild type (WT) and occludin deficient (Ocln−/−) mice were fed 1–6% ethanol in Lieber–DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers.ResultsEthanol feeding significantly reduced body weight gain in Ocln−/− mice. Ethanol increased inulin permeability in colon of both WT and Ocln−/− mice, but the effect was 4-fold higher in Ocln−/− mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and β-catenin from the junctions and elevated TLR4, which was more severe in Ocln−/− mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln−/− mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln−/− mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln−/− mice.ConclusionThis study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.  相似文献   

9.
ERK (extracellular-signal-regulated kinase) activation leads to disruption of tight junctions in some epithelial monolayers, whereas it prevents disruption of tight junctions in other epithelia. The factors responsible for such contrasting influences of ERK on tight junction integrity are unknown. The present study investigated the effect of the state of cell differentiation on ERK-mediated regulation of tight junctions in Caco-2 cell monolayers. EGF (epidermal growth factor) potentiated H2O2-induced tight junction disruption in under-differentiated cell monolayers, which was attenuated by the MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitor U0126. In contrast, EGF prevented H2O2-induced disruption of tight junctions in differentiated cell monolayers, which was also attenuated by U0126. Knockdown of ERK1/2 enhanced tight junction integrity and accelerated assembly of tight junctions in under-differentiated cell monolayers, whereas it had the opposite effect in differentiated cell monolayers. Regulated expression of wild-type and constitutively active MEK1 disrupted tight junctions, and the expression of dominant-negative MEK1 enhanced tight junction integrity in under-differentiated cells, whereas contrasting responses were recorded in differentiated cells. EGF prevented both H2O2-induced association of PP2A (protein phosphatase 2A), and loss of association of PKCζ (protein kinase Cζ), with occludin by an ERK-dependent mechanism in differentiated cell monolayers, but not in under-differentiated cell monolayers. Active ERK was distributed in the intracellular compartment in under-differentiated cell monolayers, whereas it was localized mainly in the perijunctional region in differentiated cell monolayers. Thus ERK may exhibit its contrasting influences on tight junction integrity in under-differentiated and differentiated epithelial cells by virtue of differences in its subcellular distribution and ability to regulate the association of PKCζ and PP2A with tight junction proteins.  相似文献   

10.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

11.
12.
13.
Retinoic acid exerts antiproliferative and differentiative effects in normal and transformed in vitro hepatocytes. In order to verify whether these effects are related to a modulation of adhesion molecules, we used Western blot analysis and immunofluorescence microscopy to investigate the E-cadherin/β-catenin complex, the main system of adherens junctions, and the occludin/ZO-1 complex present in the tight junctions in HepG2 cells cultured in the presence or absence of retinoic acid. Results showed that retinoic acid treatment increases the amount of β-catenin bound to E-cadherin by decreasing its tyrosine-phosphorylation level. Similar results were obtained with the tight junction system, in which the amount of occludin/ZO-1 complex is increased by a similar mechanism that reduced the level of ZO-1 phosphorylation on tyrosine. Immunofluorescence images also confirm these results, showing the localization on the cell surface of both adhesion complexes. Their insertion into the plasma membrane could be suggestive of an optimal reassembly and function of adherens and tight junctions in hepatoma cells, indicating that retinoic acid, besides inhibiting cell proliferation, improves cell-cell adhesion, sustaining or inducing the expression of a more differentiated phenotype.  相似文献   

14.
Dynamics of tight and adherens junctions under EGTA treatment   总被引:4,自引:0,他引:4  
The dynamics of tight junctions (TJs) and adherens junctions (AJs) under EGTA treatment were investigated in Madin Darby canine kidney (MDCK) cells. Detailed information about the behavior of TJ and AJ proteins during the opening and resealing of TJs and AJs is still scarce. By means of the "calcium chelation" method, the distribution and colocalization of junctional proteins were studied with confocal laser scanning microscopy using a deconvolution algorithm for high-resolution images. Colocalization was analyzed for pairs of the following proteins: ZO-1, occludin, claudin-1, E-cadherin and F-actin. Significant differences were found for the analyzed pairs in control cells compared to EGTA-treated cells with respect to the position of the colocalization maxima within the cell monolayers as well as with respect to the amount of colocalized voxels. Under EGTA treatment, colocalization for ZO-1/occludin, ZO-1/claudin-1, claudin-1/occludin, E-cadherin/occludin and E-cadherin/claudin-1 dropped below 35% of the control value. Only for the ZO-1/E-cadherin pair, the amount of colocalized voxels increased and a shift to a more basal position was observed. During the opening of TJs and AJs, ZO-1 colocalized with E-cadherin in the lateral membrane region, whereas in controls, ZO-1 colocalized with occludin and claudin-1 in the junctional complex. The combination of deconvolution with colocalization analysis of confocal data sets offers a powerful tool to investigate the spatial relationship of TJ and AJ proteins during assembly and disassembly of cell-cell contacts.  相似文献   

15.
Although IGF-II activating the IGF-II receptor signaling pathway has been found to stimulate cardiomyocyte hypertrophy, the role of IGF-II in cardiac cell apoptosis remains unclear. This study aimed to identify the roles of IGF-II and/or IGF-II receptors (IGF-II/IIR) in cardiomyoblast apoptosis and in hypertensive rat hearts with abdominal aorta ligation. Cultured rat heart-derived H9c2 cardiomyoblasts and excised hearts from Sprague-Dawley rats with 0- to 20-day complete abdominal aorta ligation, a model of ANG II elevation and hypertension, were used. IGF-II/IIR expression, caspase activity, DNA fragmentation, and apoptotic cells were measured by RT-PCR, Western blot, agarose gel electrophoresis, and TUNEL assay following various combinations of ANG II, IGF-II/IIR antibody, CsA (calcineurin inhibitor), SP-600125 (JNK inhibitor), SB-203580 (p38 inhibitor), U-0126 (MEK inhibitor), or Staurosporine (PKC inhibitor) in H9c2 cells. ANG II-induced DNA fragmentation and TUNEL-positive cells were blocked by IGF-II/IIR antibodies and antisense IGF-II, but not by IGF-II sense. IGF-II-induced apoptosis was blocked by IGF-IIR antibody and CsA. The increased gene expressions of IGF-II and -IIR induced by ANG II were reversed by U-0126 and Sp600125, respectively. Caspase 8 activities induced by ANG II were attenuated by U-0126, SP-600125, and CsA. DNA fragmentation induced by ANG II was totally blocked by SP-600125, and CsA and was attenuated by U-0126. In rats with 0- to 20-day complete abdominal aorta ligation, the increases in IGF-II/IIR levels in the left ventricle were accompanied by hypertension as well as increases in caspase 9 activities and TUNEL-positive cardiac myocytes. ANG II-induced apoptosis was reversed by IGF-II/IIR blockade and coexisted with increased transactivation of IGF-II and -IIR, which are mediated by ERK and JNK pathways, respectively, both of which further contributed to cardiomyoblast apoptosis via calcineurin signaling. The increased cardiac IGF-II, IGF-IIR, caspase 9, and cellular apoptosis were also found in hypertensive rats with abdominal aorta ligation.  相似文献   

16.
Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and beta-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCbetaI and PKCepsilon. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism.  相似文献   

17.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   

18.
19.
Respiratory syncytial virus (RSV) is the major cause of bronchiolitis in infants, and a common feature of RSV infections is increased lung permeability. The accumulation of fluid in the infected lungs is caused by changes in the endothelial and epithelial membrane integrity. However, the exact mechanisms of viral-induced fluid extravasation remain unclear. Here, we report that infection of human epithelial cells with RSV results in significant epithelial membrane barrier disruption as assessed by a decrease in transepithelial electrical resistance (TEpR). This decrease in TEpR, which indicates changes in paracellular permeability, was mediated by marked cellular cytoskeletal rearrangement. Importantly, the decrease in TEpR was attenuated by using p38 MAPK inhibitors (SB-203580) but was partially affected by JNK inhibitor SP-600125. Interestingly, treatment of A549 cells with MEK1/2 inhibitor (U-0126) led to a decrease in TEpR in the absence of RSV infection. The changes in TEpR were concomitant with an increase in heat shock protein 27 (Hsp27) phosphorylation and with actin microfilament rearrangement. Thus our data suggest that p38 MAPK and Hsp27 are required for RSV induction of human epithelial membrane permeability.  相似文献   

20.
Epithelial cell-cell adhesion is controlled by multiprotein complexes that include E-cadherin-mediated adherens junctions (AJs) and ZO-1-containing tight junctions (TJs). Previously, we reported that reduction of E-cadherin N-glycosylation in normal and cancer cells promoted stabilization of AJs through changes in the composition and cytoskeletal association of E-cadherin scaffolds. Here, we show that enhanced interaction of hypoglycosylated E-cadherin-containing AJs with protein phosphatase 2A (PP2A) represents a mechanism for promoting TJ assembly. In MDCK cells, attenuation of cellular N-glycosylation with siRNA to DPAGT1, the first gene in the N-glycosylation pathway, reduced N-glycosylation of surface E-cadherin and resulted in increased recruitment of stabilizing proteins γ-catenin, α-catenin, vinculin and PP2A to AJs. Greater association of PP2A with AJs correlated with diminished binding of PP2A to ZO-1 and claudin-1 and with increased pools of serine-phosphorylated ZO-1 and claudin-1. More ZO-1 was found in complexes with occludin and claudin-1, and this corresponded to enhanced transepithelial resistance (TER), indicating physiological assembly of TJs. Similar maturation of AJs and TJs was detected after transfection of MDCK cells with the hypoglycosylated E-cadherin variant, V13. Our data indicate that E-cadherin N-glycans coordinate the maturity of AJs with the assembly of TJs by affecting the association of PP2A with these junctional complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号