首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study used a modified CO(2) rebreathing procedure to examine the effect of gender on the chemoreflex control of breathing during wakefulness in healthy men (n = 14) and women (n = 14). Women were tested in the follicular phase of the menstrual cycle. During rebreathing trials, subjects hyperventilated to reduce the partial pressure of end-tidal CO(2) (Pet(CO(2))) below 25 Torr and were then switched to a rebreathing bag containing a normocapnic hypoxic or hyperoxic gas mixture. During the trial, Pet(CO(2)) increased, while O(2) was maintained at a constant level. The point at which ventilation began to rise as Pet(CO(2)) increased was identified as the ventilatory recruitment threshold (VRT). Ventilation below the VRT was measured, and the slope of the ventilatory response above the VRT was determined. Gender had no effect on the hyperoxic or hypoxic VRT for CO(2). Central chemoreflex sensitivity was significantly greater in men than women but not after correction for forced vital capacity. Measures of peripheral chemoreflex sensitivity were similar between genders. However, the slope of the tidal volume (Vt) response to hyperoxic and hypoxic CO(2) rebreathing (corrected and uncorrected) was greater in men than women, respectively. We conclude that central chemoreflex sensitivity is greater in men compared with women as reflected by differences in ventilatory (uncorrected) and Vt (corrected and uncorrected) responses to CO(2). However, gender has no significant effect on the central chemoreflex VRT for CO(2). The peripheral chemoreflex control of breathing during wakefulness is similar between men and women.  相似文献   

2.
Effects of almitrine bismesylate on the peripheral and central chemoreflex to a CO2 challenge during normoxia were studied in nine alpha-chloralose-urethan anesthetized cats. With the dynamic end-tidal CO2 forcing technique the ventilatory response after a square-wave change in end-tidal PCO2 (PETCO2) was partitioned into a central and a peripheral part using a two-compartment model. With almitrine administered intravenously (0.6 mg/kg followed by a maintenance dose of 0.4 mg.kg-1 X h-1) the CO2 sensitivity of the peripheral chemoreflex increased on the average from 0.315 to 0.564 l.min-1 X kPa-1 (P less than 0.001, 6 cats, 73 runs), whereas the CO2 sensitivity of the central chemoreflex remained the same (P = 0.87). The extrapolated PETCO2 at zero ventilation (apneic threshold) of the (total) steady-state response curve decreased on the average from 3.50 to 2.36 kPa (P less than 0.001). With the artificial brain stem perfusion technique it was confirmed that almitrine did not affect ventilation by administering it to the blood perfusing the brain stem. We conclude that almitrine bismesylate during normoxia enhances the CO2 sensitivity of the peripheral chemoreflex loop and decreases the apneic threshold due to an action located outside the brain stem.  相似文献   

3.
This study examined the effects of human pregnancy on the central chemoreflex control of breathing. Subjects were two groups (n=11) of pregnant subjects (PG, gestational age, 36.5+/-0.4 wk) and nonpregnant control subjects (CG), equated for mean age, body height, prepregnant body mass, parity, and aerobic fitness. All subjects performed a hyperoxic CO2 rebreathing procedure, which includes prior hyperventilation and maintenance of iso-oxia. Resting blood gases and plasma progesterone and estradiol concentrations were measured. During rebreathing trials, end-tidal Pco2 increased, whereas end-tidal Po2 was maintained at a constant hyperoxic level. The point at which ventilation (Ve) began to rise as end-tidal Pco2 increased was identified as the central chemoreflex ventilatory recruitment threshold for CO2 (VRTco2). Ve levels below (basal Ve) and above (central chemoreflex sensitivity) the VRTco2 were determined. The VRTco2 was significantly lower in the PG vs. CG (40.5+/-0.8 vs. 45.8+/-1.6 Torr), and both basal Ve (14.8+/-1.1 vs. 9.3+/-1.6 l/min) and central chemoreflex sensitivity (5.07+/-0.74 vs. 3.16+/-0.29 l.min-1.Torr-1) were significantly higher in the PG vs. CG. Pooled data from the two groups showed significant correlations for resting arterial Pco2 with basal Ve, central chemoreflex sensitivity, and the VRTco2. The VRTco2 was also correlated with progesterone and estradiol concentrations. These data support the hypothesis that pregnancy decreases the threshold and increases the sensitivity of the central chemoreflex response to CO2. These changes may be due to the effects of gestational hormones on chemoreflex and/or nonchemoreflex drives to breathe.  相似文献   

4.
Comparison of chemoreflex gains obtained with two different methods in cats   总被引:6,自引:0,他引:6  
This study investigates the correspondence between results of the ventilatory response to CO2 obtained using the technique of dynamic end-tidal CO2 forcing (DEF) and results obtained using the technique of artificial brain stem perfusion (ABP). The DEF technique separates the dynamic ventilatory response into a slow and fast component with gains g1 and g2 as well as the extrapolated CO2 tension at zero ventilation (Bk). The ABP technique results in steady-state central (Sc) and peripheral (Sp) chemoreflex gains and extrapolated CO2 tension at zero ventilation (B). Experiments were performed on 14 alpha-chloralose-urethan anesthetized cats. A wide range of relative peripheral chemosensitivities was obtained by subjecting eight cats to normoxic and three cats to hypoxic CO2 challenges and three cats to both conditions. Statistical analysis of the experimental data showed that the vectors (g1, g2, Bk) and (Sc, Sp, B) for each cat did not differ significantly (P = 0.56). This was also the case for the vectors [g2/(g1 + g2), Bk] and [Sp/(Sc + Sp), B] (P = 0.21). We conclude that in the DEF experiments the slow ventilatory response to isoxic changes in end-tidal CO2 can be equated with the central chemoreflex loop and the faster ventilatory response to the peripheral chemoreflex loop. The agreement between the two techniques is good.  相似文献   

5.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

6.
While orthostatic tachycardia is the hallmark of postural tachycardia syndrome (POTS), orthostasis also initiates increased minute ventilation (Ve) and decreased end-tidal CO(2) in many patients. We hypothesized that chemoreflex sensitivity would be increased in patients with POTS. We therefore measured chemoreceptor sensitivity in 20 POTS (16 women and 4 men) and 14 healthy controls (10 women and 4 men), 16-35 yr old by exposing them to eucapneic hyperoxia (30% O(2)), eucapneic hypoxia (10% O(2)), and hypercapnic hyperoxia (30% O(2) + 5% CO(2)) while supine and during 70° head-upright tilt. Heart rate, mean arterial pressure, O(2) saturation, end-tidal CO(2), and Ve were measured. Peripheral chemoreflex sensitivity was calculated as the difference in Ve during hypoxia compared with room air divided by the change in O(2) saturation. Central chemoreflex sensitivity was determined by the difference in Ve during hypercapnia divided by the change in CO(2). POTS subjects had an increased peripheral chemoreflex sensitivity (in l·min(-1)·%oxygen(-1)) in response to hypoxia (0.42 ± 0.38 vs. 0.19 ± 0.17) but a decreased central chemoreflex sensitivity (l·min(-1)·Torr(-1)) CO(2) response (0.49 ± 0.38 vs. 1.04 ± 0.18) compared with controls. CO(2) sensitivity was also reduced in POTS subjects when supine. POTS patients are markedly sensitized to hypoxia when upright but desensitized to CO(2) while upright or supine. The interactions between orthostatic baroreflex unloading and altered chemoreflex sensitivities may explain the hyperventilation in POTS patients.  相似文献   

7.
The aims of this study were to determine 1) whether ventilatory adaptation occurred over a 5-day exposure to a constant elevation in end-tidal PCO2 and 2) whether such an exposure altered the sensitivity of the chemoreflexes to acute hypoxia and hypercapnia. Ten healthy human subjects were studied over a period of 13 days. Their ventilation, chemoreflex sensitivities, and acid-base status were measured daily before, during, and after 5 days of elevated end-tidal PCO2 at 8 Torr above normal. There was no major adaptation of ventilation during the 5 days of hypercapnic exposure. There was an increase in ventilatory chemosensitivity to acute hypoxia (from 1.35 +/- 0.08 to 1.70 +/- 0.07 l/min/%; P < 0.01) but no change in ventilatory chemosensitivity to acute hypercapnia. There was a degree of compensatory metabolic alkalosis. The results do not support the hypothesis that the ventilatory adaptation to chronic hypercapnia would be much greater with constant elevation of alveolar PCO2 than with constant elevation of inspired PCO2, as has been used in previous studies and in which the feedback loop between ventilation and alveolar PCO2 is left intact.  相似文献   

8.
9.
We determined the effects of specific carotid body chemoreceptor inhibition on the propensity for apnea during sleep. We reduced the responsiveness of the carotid body chemoreceptors using intravenous dopamine infusions during non-rapid eye movement sleep in six dogs. Then we quantified the difference in end-tidal Pco(2) (Pet(CO(2))) between eupnea and the apneic threshold, the "CO(2) reserve," by gradually reducing Pet(CO(2)) transiently with pressure support ventilation at progressively increased tidal volume until apnea occurred. Dopamine infusions decreased steady-state eupneic ventilation by 15 +/- 6%, causing a mean CO(2) retention of 3.9 +/- 1.9 mmHg and a brief period of ventilatory instability. The apneic threshold Pet(CO(2)) rose 5.1 +/- 1.9 Torr; thus the CO(2) reserve was narrowed from -3.9 +/- 0.62 Torr in control to -2.7 +/- 0.78 Torr with dopamine. This decrease in the CO(2) reserve with dopamine resulted solely from the 20.5 +/- 11.3% increase in plant gain; the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal. We conclude that specific carotid chemoreceptor inhibition with dopamine increases the propensity for apnea during sleep by narrowing the CO(2) reserve below eupnea. This narrowing is due solely to an increase in plant gain as the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal control. These findings have implications for the role of chemoreceptor inhibition/stimulation in the genesis of apnea and breathing periodicity during sleep.  相似文献   

10.
It has often been assumed that under normoxia, closed-loop ventilatory responses to transient CO2 stimulation (i.e., lasting for 1-3 breaths) are less likely to be mediated by the slow-responding central (medullary) chemoreflex. This assumption, however, has not been quantitatively examined in humans. We hypothesized that in the closed-loop respiratory chemical feedback system [in which the centrally mediated ventilatory response to transient changes in the arterial PCO2 levels (PaCO2) will in turn affect the pulmonary CO2 and hence PaCO2], the contribution of the central chemoreflex pathways to brief disturbances in blood gases may be more important than considered previously. Using the technique of pseudorandom binary CO2 stimulation, we quantified the ventilatory response of normal humans to brief disturbances in arterial CO2 during hyperoxia. Tidal volume (VI), inspiratory ventilation (VI), inspiratory time (TI), expiratory time (TE), and end-tidal CO2 fraction (FETCO2) were measured in subjects who inhaled a mixture that was pseudorandomly switched between 95% O2-5% CO2 and 100% O2 (63 breath sequences). From these data, we calculated the responses of VI, VI, TI, TE, and FETCO2 to a single-breath inhalation of 1% CO2 in O2. Our results showed that in response to a brief increase of 0.75 Torr in alveolar CO2, VI showed a transient increase (average peak response of 0.12 1/min) that persisted for greater than or equal to 80 s in every subject. The response of VI was similar to that of VI, whereas TI and TE showed no consistent changes. Using these results we calculated that central chemoreflex pathways may contribute significantly to typical transient CO2 stimulation tests in hyperoxic and normoxic humans.  相似文献   

11.
We studied the peripheral ventilatory response dynamics to changes in end-tidal O2 tension (PETO2) in 13 cats anesthetized with alpha-chloralose-urethan. The arterial O2 tension in the medulla oblongata was kept constant using the technique of artificial perfusion of the brain stem. At constant end-tidal CO2 tension, 72 ventilatory on-responses due to stepwise changes in PETO2 from hyperoxia (45-55 kPa) to hypoxia (4.7-9.0 kPa) and 62 ventilatory off-responses due to changes from hypoxia to hyperoxia were assessed. We fitted two exponential functions with the same time delay to the breath-by-breath ventilation and found a fast and a slow component in 85% of the ventilatory on-responses and in 76% of the off-responses. The time constant of the fast component of the ventilatory on-response was 1.6 +/- 1.5 (SD) s, and that of the off-response was 2.4 +/- 1.3 s; the gain of the on-response was smaller than that of the off-response (P = 0.020). For the slow component, the time constant of the on-response (72.6 +/- 36.4 s) was larger (P = 0.028) than that of the off-response (43.7 +/- 28.3 s), whereas the gain of the on-response exceeded that of the off-response (P = 0.031). We conclude that the ventilatory response of the peripheral chemoreflex loop to stepwise changes in PETO2 contains a fast and a slow component.  相似文献   

12.
Sleep-induced periodic breathing and apnea: a theoretical study   总被引:9,自引:0,他引:9  
To elucidate the mechanisms that lead to sleep-disordered breathing, we have developed a mathematical model that allows for dynamic interactions among the chemical control of respiration, changes in sleep-waking state, and changes in upper airway patency. The increase in steady-state arterial PCO2 accompanying sleep is shown to be inversely related to the ventilatory response to CO2. Chemical control of respiration becomes less stable during the light stage of sleep, despite a reduction in chemoresponsiveness, due to a concomitant increase in "plant gain" (i.e., responsiveness of blood gases to ventilatory changes). The withdrawal of the "wakefulness drive" during sleep onset represents a strong perturbation to respiratory control: higher magnitudes and rates of withdrawal of this drive favor instability. These results may account for the higher incidence of periodic breathing observed during light sleep and sleep onset. Periodic ventilation can also result from repetitive alternations between sleep onset and arousal. The potential for instability is further compounded if the possibility of upper airway occlusion is also included. In systems with high controller gains, instability is mediated primarily through chemoreflex overcompensation. However, in systems with depressed chemoresponsiveness, rapid sleep onset and large blood gas fluctuations trigger repetitive episodes of arousal and hyperpnea alternating with apneas that may or may not be obstructive. Between these extremes, more complex patterns can arise from the interaction between chemoreflex-mediated oscillations of shorter-cycle-duration (approximately 36 s) and longer-wavelength (approximately 60-80 s) state-driven oscillations.  相似文献   

13.
We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial PCO(2) to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ~60 min on a cycle ergometer at 50% of peak O(2) uptake with and without inhalation of CO(2)-enriched air. Subjects began breathing CO(2)-enriched air at the point that end-tidal Pco(2) started to decline. Esophageal temperature (T(es)), minute ventilation (V(E)), tidal volume (V(T)), respiratory frequency (f(R)), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V(E), V(T), f(R), and ventilatory equivalents for O(2) uptake (V(E)/VO(2)) and CO(2) output (V(E)/VCO(2)) were plotted against changes in T(es) from the start of the CO(2)-enriched air inhalation (ΔT(es)), the slopes of the regression lines relating V(E), V(T), V(E)/VO(2), and V(E)/VCO(2) to ΔT(es) (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO(2)-enriched air than when they breathed room air (V(E): 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min(-1)·°C(-1), V(T): 18 ± 120 vs. -81 ± 92 ml/°C; V(E)/VO(2): 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V(E)/VCO(2): 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in Ve was accompanied by increases in V(T) and f(R). These results suggest that restoration of arterial PCO(2) to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.  相似文献   

14.
We have tested the hypothesis that interactions among eight parameters of the respiratory and cardiovascular systems that determine the loop gain (LG) of the respiratory CO2 feedback control system might account for the degree of stability or instability of breathing patterns in healthy sleeping volunteers as well as in familial dysautonomia (FD) and congenital central hypoventilation syndrome (CCHS) patients. The predictability of cycle duration was tested as well. We measured the values of CO2 sensitivity, CO2 delivery capacity in the circulation, circulation delay, mean lung volume for CO2, and mixed venous PCO2 in 8 FD patients, 2 CCHS patients, and 19 healthy controls. The values of these parameters were used in a mathematical model to compute the LG of the respiratory control system during sleep for each epoch of respiration analyzed. The strength of the ventilatory oscillations (R) was quantified using power density spectra of the ventilation time series. All subjects were studied at inspiratory O2 concentrations (FIO2) of 0.21 and 0.15; CCHS patients and controls were also studied at 0.12 FIO2 to examine the effect of steady-state hypoxia on respiratory system stability. In 2 FD patients, LG was elevated at both levels of FIO2 and periodic breathing was observed; the values of R were elevated. Elevated mixed venous PCO2 and reduced CO2 delivery capacity were chiefly responsible for the abnormally high LG observed. In three healthy volunteers, high LG and unstable patterns were associated with high chemosensitivity. The CCHS patients, however, remained stable even at 0.12 FIO2 because LG remained equivalent to zero due to a lack of chemosensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Nonobstructive (i.e., central) sleep apnea is a major cause of sleep-disordered breathing in patients with stable congestive heart failure (CHF). Although central sleep apnea (CSA) is prevalent in this population, occurring in 40-50% of patients, its pathogenesis is poorly understood. Dynamic loop gain and delay of the chemoreflex response to CO(2) was measured during wakefulness in CHF patients with and without CSA by use of a pseudorandom binary CO(2) stimulus method. Use of a hyperoxic background minimized responses derived from peripheral chemoreceptors. The closed-loop and open-loop gain, estimated from the impulse response, was three times greater in patients with nocturnal CSA (n = 9) than in non-CSA patients (n = 9). Loop dynamics, estimated by the 95% response duration time, did not differ between the two groups of patients. We speculate that an increase in dynamic gain of the central chemoreflex response to CO(2) contributes to the genesis of CSA in patients with CHF.  相似文献   

16.
We tested the hypothesis that in golden Syrian hamsters (Mesocricetus auratus) carotid body dopaminergic D2 receptors modulate ventilation in air, during exposure to intermittent hypoxia (IH) and reoxygenation. Ventilation was evaluated using the barometric method and CO2 production was determined using the flow through method. Hamsters (n=8) received either subcutaneous injections of vehicle, haloperidol (0.5 mg/kg) or domperidone (0.5 mg/kg). Ventilatory and metabolic variables were determined 30 min following injections, after each of 5 bouts of 5 min of 10% oxygen interspersed by normoxia (IH), and 15, 30, 45 and 60 min following IH when hamsters were exposed to air. Haloperidol, but not domperidone decreased body temperature in hamsters. Neither treatment affected CO2 production. Vehicle-treated hamsters exhibited ventilatory long-term facilitation (VLTF) following IH. Haloperidol or domperidone decreased ventilation in air, during IH and eliminated VLTF due to changes in tidal volume and not frequency of breathing. Thus, in hamsters D2 receptors are involved in control of body temperature and ventilation during and following IH.  相似文献   

17.
Chemoreflex modulation of ventilatory dynamics during exercise in humans   总被引:1,自引:0,他引:1  
The precision of arterial blood gas homeostasis following a change of work rate depends on the response kinetics of ventilation. The carotid bodies (CB's) have been proposed as modulators of these kinetics. The present investigation was undertaken to determine whether the effect is specific to CB activation or whether other factors that augment the exercise hyperpnea would produce a similar response. We therefore established the effects of increased CB and central (C) chemoreflex activation on the inspired ventilatory (VI) dynamics for moderate-intensity cycling. Work tests were separately performed with air, 12% O2 to increase CB activity, 100% O2 to "abolish" CB activity, and CO2 in O2 to increase C activity. The time constant of the VI response was substantially shortened by hypoxia (40 s) compared with air breathing (58 s) and increased by 100% O2 (92 s) and, even more so, by CO2 in O2 (101 s). We conclude that increased carotid (but not central) chemoreflex responsiveness speeds the kinetics of the exercise hyperpnea by a process that is not merely the consequence of increased ventilatory drive.  相似文献   

18.
The relationship between CO2 and ventilatory response to sustained hypoxia was examined in nine normal young adults. At three different levels of end-tidal partial pressure of CO2 (PETCO2, approximately 35, 41.8, and 44.3 Torr), isocapnic hypoxia was induced for 25 min and after 7 min of breathing 21% O2, isocapnic hypoxia was reinduced for 5 min. Regardless of PETCO2 levels, the ventilatory response to sustained hypoxia was biphasic, characterized by an initial increase (acute hypoxic response, AHR), followed by a decline (hypoxic depression). The biphasic response pattern was due to alteration in tidal volume, which at all CO2 levels decreased significantly (P less than 0.05), without a significant change in breathing frequency. The magnitude of the hypoxic depression, independent of CO2, correlated significantly (r = 0.78, P less than 0.001) with the AHR, but not with the ventilatory response to CO2. The decline of minute ventilation was not significantly affected by PETCO2 [averaged 2.3 +/- 0.6, 3.8 +/- 1.3, and 4.5 +/- 2.2 (SE) 1/min for PETCO2 35, 41.8, and 44.3 Torr, respectively]. This decay was significant for PETCO2 35 and 41.8 Torr but not for 44.3 Torr. The second exposure to hypoxia failed to elicit the same AHR as the first exposure; at all CO2 levels the AHR was significantly greater (P less than 0.05) during the first hypoxic exposure than during the second. We conclude that hypoxia exhibits a long-lasting inhibitory effect on ventilation that is independent of CO2, at least in the range of PETCO2 studied, but is related to hypoxic ventilatory sensitivity.  相似文献   

19.
The ventilatory responses to CO(2) of high-altitude (HA) natives and patients with chronic mountain sickness (CMS) were studied and compared with sea-level (SL) natives living at SL. A multifrequency binary sequence (MFBS) in end-tidal Pco(2) was employed to separate the fast (peripheral) and slow (central) components of the chemoreflex response. MFBS was imposed against a background of both euoxia (end-tidal Po(2) of 100 Torr) and hypoxia (52.5 Torr). Both total and central chemoreflex sensitivity to CO(2) in euoxia were higher in HA and CMS subjects compared with SL subjects. Peripheral chemoreflex sensitivity to CO(2) in euoxia was higher in HA subjects than in SL subjects. Hypoxia induced a greater increase in total chemoreflex sensitivity to CO(2) in SL subjects than in HA and CMS subjects, but peripheral chemoreflex sensitivity to CO(2) in hypoxia was no greater in SL subjects than in HA and CMS subjects. Values for the slow (central) time constant were significantly greater for HA and CMS subjects than for SL subjects.  相似文献   

20.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号