首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CD300F is known to exhibit inhibitory activity in myeloid cells through its intracellular ITIM. To investigate the effect of CD300F stimulation on TLR signaling, the human acute monocytic leukemia cell line THP-1 was treated with CD300F-specific mAbs or two synthetic peptides that represented the ITIM-like domains of CD300F. Treatment with these agents blocked TLR2-, 3-, 4-, and 9-mediated expression of proinflammatory mediators such as IL-8 and matrix metalloproteinase-9. The luciferase reporter assay in 293T cells and Western blot analysis of THP-1 cells revealed that these inhibitory actions were effective in pathways involving MyD88 and/or TRIF of TLR signaling and associated with marked suppression of IκB kinase activation, phosphorylation/degradation of IκB, and subsequent activation of NF-κB. Use of specific inhibitors and immunoprecipitation analysis further indicated that the inhibitory effects were mediated by Src homology 2 domain-containing phosphatase-1, a protein tyrosine phosphatase with inhibitory activity in hematopoietic cells. These data indicate that CD300F is an active regulator of TLR-mediated macrophage activation through its association with Src homology 2 domain-containing phosphatase-1 and that the synthetic peptides can be applied for the regulation of immune responses that are induced by TLRs.  相似文献   

3.
4.
5.
6.
7.
Members of the IFN regulatory factor (IRF) family regulate gene expression critical to immune response, hemopoiesis, and proliferation. Although related by homology at their N-terminal DNA-binding domain, they display individual functional properties. The distinct properties result from differences in regulated expression, response to activating signals, and interaction with DNA regulatory elements. IRF-3 is expressed ubiquitously and is activated by serine phosphorylation in response to viral infection or TLR signaling. Evidence indicates that the kinases TANK-binding kinase 1 and inhibitor of NF-kappaB kinase-epsilon specifically phosphorylate and thereby activate IRF-3. We evaluated the contribution of another member of the IRF family, IRF-5, during viral infection since prior studies provided varied results. Analysis of phosphorylation, nuclear translocation, dimerization, binding to CREB-binding protein, recognition of DNA, and induction of gene expression were used comparatively with IRF-3 as a measure of IRF-5 activation. IRF-5 was not activated by viral infection; however, expression of TANK-binding kinase 1 or inhibitor of NF-kappaB kinase-epsilon did provide clear activation of IRF-5. IRF-5 is therefore distinct in its activation profile from IRF-3. However, similar to the biological effects of IRF-3 activation, a constitutively active mutation of IRF-5 promoted apoptosis. The apoptosis was inhibited by expression of Bcl-x(L) but not a dominant-negative mutation of the Fas-associated death domain. These studies support the distinct activation profiles of IRF-3 in comparison to IRF-5, but reveal a potential shared biological effect.  相似文献   

8.
9.
10.
11.
12.
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPS) leading to the activation of the innate immune response and subsequently to the shaping of the adaptive immune response. Of the known human TLRs, TLR3, 7, 8, and 9 were shown to recognize nucleic acid ligands. TLR3 signaling is induced by double-stranded (ds)RNA, a molecular signature of viruses, and is mediated by the TRIF (TIR domain-containing adaptor-inducing IFNbeta) adaptor molecule. Thus, TLR3 plays an important role in the host response to viral infections. The liver is constantly exposed to a large variety of foreign substances, including pathogens such as HBV (hepatitis B virus) and HCV (hepatitis C virus), which frequently establish persistent liver infections. In this work, we investigated the expression and signaling pathway of TLR3 in different hepatoma cell lines. We show that hepatocyte lineage cells express relatively low levels of TLR3 mRNA. TLR3 signaling in HEK293 cells (human embryonic kidney cells) activated NF-kappaB and IRF3 (interferon regulatory factor 3) and induced IFNbeta (interferon beta) promoter expression, which are known to lead to pro-inflammatory cytokine secretion. In Huh7 cells, there was only a short-term IRF3 activation, and a very low level of IFNbeta expression. In HepG2 cells on the other hand, while no induction of pro-inflammatory factors was observed, signaling by TLR3 was skewed towards the induction of apoptosis. These results indicate preferential induction of the apoptotic pathway over the cytokine induction pathway by TLR3 signaling in hepatocellular carcinoma cells with potential implications for therapeutic strategies.  相似文献   

13.
14.
15.
Anti-viral host defense harbors a variety of strategies to coup with viral infection. Recent findings suggested that Toll-like receptors (TLRs) and their signaling pathways involve type I IFN induction in response to virus-specific molecular patterns. TLR 3 and TLR 4 in myeloid dendritic cells (mDCs) recognize viral dsRNA and putative viral products, respectively, to induce IFN-beta via IRF-3 activation. On the other hand, TLR 7 and TLR 9 in plasmacytoid DCs (pDCs) induce IFN-alpha in response to their ligands, U/G-rich ssRNA and non-methylated CpG DNA. We identified TICAM-1 which is recruited to the cytoplasmic domain (designated TIR) of TLR 3 and allows to select the pathway to activation of IRF-3. We also identified TICAM-2 which binds TLR 4 and together with TICAM-1 activates IRF-3. TICAM-1 knockdown by RNAi supported the key role of TICAM-1 in IFN-beta induction. Hence, the IFN-beta induction in mDCs appears in part due to the function of TICAM-1. Viruses are known to activate kinases that directly activate IRF-3 inside the cells, and this pathway may merge with the TLR 3-TICAM-1 pathway. Here we review the relationship between the TLR 3-TICAM-1 pathway and viral infection.  相似文献   

16.
17.
Lipopolysaccharide (LPS) is an agonist for Toll-like receptor (TLR) 4 and expresses many genes including NF-kappaB- and interferon regulatory factor (IRF)-3/IFN-inducible genes in macrophages and dendritic cells (DCs). TICAM-1/TRIF was identified as an adapter that facilitates activation of IRF-3 followed by expression of interferon (IFN)-beta genes in TLR3 signaling, but TICAM-1 does not directly bind TLR4. Although MyD88 and Mal/TIRAP adapters functions downstream of TLR4, DC maturation and IFN-beta induction are independent of MyD88 and Mal/TIRAP. In this investigation, we report the identification of a novel adapter, TICAM-2, that physically bridges TLR4 and TICAM-1 and functionally transmits LPS-TLR4 signaling to TICAM-1, which in turn activates IRF-3. In its structural features, TICAM-2 resembled Mal/TIRAP, an adapter that links TLR2/4 and MyD88. However, TICAM-2 per se exhibited minimal ability to activate NF-kappaB and the IFN-beta promoter. Hence, in LPS signaling TLR4 recruits two types of adapters, TIRAP and TICAM-2, to its cytoplasmic domain that are indirectly connected to two effective adapters, MyD88 and TICAM-1, respectively. We conclude that for LPS-TLR4-mediated activation of IFN-beta, the adapter complex of TICAM-2 and TICAM-1 plays a crucial role. This results in the construction of MyD88-dependent and -independent pathways separately downstream of the two distinct adapters.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号