首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The calmodulin content in cardiomyocyte cytosol of hypoxic myocardium is increased compared to normal level. This is unaccompanied by differences in the stimulating effect of calmodulin on Ca2+ transport in sarcoplasmic reticulum (SR) of ischemic heart. The decrease of the endogenous cAMP-dependent protein kinase activity in ischemia is associated with the lowered resistance to trypsinolysis of Ca2+ transport in SR (trypsin/microsomal protein ratio is 1:10) with simultaneous Ca-ATPase activation. In the presence of exogenous protein kinase and cAMP the protective effect of phosphorylation on Ca2+ transport in SR vesicles of hypoxic cardiomyocytes treated with trypsin for 10 min reaches the same level as in intact heart.  相似文献   

2.
邬颖  陈庚新  徐学峥 《生理学报》1985,37(3):209-215
本实验以心室颤动阈(VFT)作为心室易颤性的指标,观察胆碱类物质氨甲酰胆碱对大鼠缺血心室 VFT 的影响及其与心肌 cAMP 和 cGMP 水平的关系。实验结果表明,氨甲酰胆碱可提高正常心脏和急性局部缺血心脏的 VFT,提高缺血和未缺血心肌的 cGMP 水平,但明显降低缺血心肌 cAMP 水平,使缺血和未缺血心肌的 cAMP/cGMP 比值显著降低,其作用与肾上腺素正好相反。实验结果还表明,急性局部缺血心脏的 VFT 与缺血心肌 cAMP/cGMP 比值之间有密切的负相关关系,相关系数 r=-0.905(n=22,P<0.001)。上述结果提示缺血心肌 cAMP/cGMP 比值的提高可能是急性心肌梗塞早期发生心室纤维性颤动的重要因素。  相似文献   

3.
The cardioprotective effect of SUN 1165, a novel sodium channel blocker, was investigated on ischemic myocardium. Nineteen anesthetized dogs were subjected to 2 hours coronary occlusion, and divided into 2 groups. In the control group, physiological saline was infused. In the SUN 1165 group, 2 mg/kg of SUN 1165 was injected intravenously. Two hours after occlusion, heart mitochondria were prepared from both ischemic and non-ischemic areas in each group, and their functions (RCI and St.III O2) were measured polarographically with succinate as a substrate. Fractionation of myocardial tissue from both non-ischemic and ischemic areas was performed according to the method of Weglicki et al., and the activities of lysosomal enzymes (NAG and beta-gluc) were measured. In the control group, mitochondrial dysfunction and leakage of lysosomal enzymes induced by 2 hours occlusion were observed. Administration of SUN 1165 maintained mitochondrial function, and prevented the leakage of lysosomal enzymes caused by ischemia significantly. These results indicated that SUN 1165 has a cardioprotective effect in ischemic heart.  相似文献   

4.
An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5-min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC.  相似文献   

5.
Angiogenic gene therapy in angina pectoris has been disappointing so far. Reasons might be that the administered genes already are overexpressed in ischemic myocardium, or that atrial and brain natriuretic peptides (ANP and BNP) are overexpressed, as they have anti-angiogenic effects. Five stable angina pectoris patients without heart failure were studied. Left ventricular biopsies were taken during coronary by-pass surgery from a region with stress-inducible ischemia and from a normal region. Both ANP and BNP but not vascular endothelial growth factor (VEGF) and VEGF-receptor 1 and 2 were overexpressed in ischemic regions compared to non-ischemic regions as measured by real-time PCR. The expression of 15 other angiogenic genes measured by oligonucleotide arrays was not consistently increased in ischemic regions. The overexpression of ANP and BNP suggests an anti-angiogenic effect in ischemic heart disease. The lack of overexpression of angiogenic genes supports the concept of therapeutic overexpression of these genes.  相似文献   

6.
We have previously shown that acute thyroid hormone treatment could limit reperfusion injury and increase post-ischemic recovery of function. In the present study, we further explore potential initiating mechanisms of this response. Thus, isolated rat hearts were subjected to 30 min zero-flow global ischemia (I) followed by 60-min reperfusion (R). Reperfusion injury was assessed by post-ischemic recovery of left ventricular developed pressure (LVDP%) and LDH release. T3 at a dose of 60 nM which had no effect on contractile function of non-ischemic myocardium, significantly increased LVDP% [48% (2.9) vs. 30.2% (3.3) for untreated group, P < 0.05] and reduced LDH release [8.3 (0.3) vs. 10 (0.42) for untreated group, P < 0.05] when administered at R. T4 (60 and 400 nM) had no effect on contractile function either in non-ischemic or ischemic myocardium. Administration of debutyl-dronedarone (DBD), a TRα1 antagonist abolished the T3-limiting effect on reperfusion injury: Thus, co-administration of T3 and DBD resulted in significantly lower LVDP%, [23% (4.7) vs. 48% (2.9) for T3 group, P < 0.05] and higher LDH release [9.9 (0.3) vs. 8.3 (0.3), for T3 group, P < 0.05]. In conclusion, acute T3 and not T4 treatment will be able to protect against reperfusion injury. T3 can exert this beneficial effect on ischemic myocardium at a dose that has no effects on non-ischemic myocardium. Acute T3-limiting effect on reperfusion injury is mediated, at least in part, via TRα1 receptor.  相似文献   

7.
The signal transduction pathways of the dopamine-D1 receptor were investigated in two cell types stably transfected with the human D1 receptor cDNA, rat pituitary GH4C1 cells (GH4-hD1), and mouse Ltk-fibroblast cells (L-hD1). In both GH4-hD1 and L-hD1 cell lines, stimulation of the dopamine-D1 receptor induced a marked increase in cAMP accumulation. In addition, dopamine potentiated activation of L-type voltage-dependent calcium channels in a cAMP-dependent manner in GH4-hD1 cells. However, in L-hD1 cells, dopamine increased cytosolic free calcium concentrations ([Ca++]i) by mobilization of intracellular calcium rather than by calcium influx. This effect was correlated with a dopamine-induced enhancement of phospholipase C activity in L-hD1 cells. Pretreatment (24 h) with cholera toxin (CTX) was used to maximally activate the GTP-binding protein (G protein) Gs, causing a maximal elevation of cAMP levels and uncoupling the D1 receptor from Gs. The described actions of dopamine in both cell lines were abolished by pretreatment with CTX, indicating that CTX substrates (e.g. Gs) may mediate these actions. The blockade by CTX was not due to CTX-induced elevation of cAMP, since pretreatment with forskolin or 8-bromo-cAMP to activate cAMP-dependent protein kinase did not inhibit dopamine actions nor alter basal [Ca++]i. Pretreatment (1-3 h) of L-hD1 cells with forskolin (10 microM) or 8-bromo-cAMP (5 mM) altered neither the basal activity of phospholipase C nor basal [Ca++]i in L-hD1 cells but greatly enhanced the dopamine-induced increase of phosphatidyl inositol turnover and [Ca++]i. From these results we conclude that: 1) the dopamine-D1 receptor induces multiple and cell-specific signals, including elevation of cAMP levels in both GH and L cells, cAMP-dependent activation and potentiation of opening of L-type voltage-dependent calcium channel in GH cells, and a novel phosphatidyl inositol-linked mobilization of cellular calcium in L cells; 2) coupling of the D1 receptor to these responses involves CTX-sensitive proteins, possibly Gs; and 3) acute preactivation of cAMP-dependent protein kinase can markedly enhance, rather than attenuate, certain pathways of dopamine-D1 transmembrane signaling.  相似文献   

8.
本实验在35只兔心脏上观察了α和β受体阻断剂对心肌缺血早期MET变化的影响,并初步分析了α受体阻断剂抗心律失常效应的作用机理。实验结果表明,β与α受体阻断剂对MET 的影响明显不同。β受体阻断剂心得安可使正常心脏与缺血心脏的MET同等程度的升高,而对阻断冠脉后 MET的降低无改善作用。与此相反,α受体阻断剂哌唑嗪对正常心脏的MET 无明显影响,但可使阻断冠脉血流后 MET降低的百分率明显减轻,此效应与血压变化和扩血管作用无直接关系。上述结果提示,β受体阻断剂可通过提高正常和缺血心脏MET 的绝对值发挥抗心律失常效应,而α受体阻断剂则有特异性的提高缺血心肌MET 的作用。  相似文献   

9.
Reactive oxygen species (ROS) are believed to be involved in triggering cardiac ischemic preconditioning (IPC). Decreased formation of ROS on reperfusion after prolonged ischemia may in part underlie protection by IPC. In heart models, these contentions have been based either on the effect of ROS scavengers to abrogate IPC-induced preservation or on a measurement of oxidation products on reperfusion. Using spectrophotofluorometry at the left ventricular wall and the fluorescent probe dihydroethidium (DHE), we measured intracellular ROS superoxide (O(2)(-).) continuously in isolated guinea pig heart and tested the effect of IPC and the O(2)(-). scavenger manganese(III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) on O(2)(-). formation throughout the phases of preconditioning (PC), 30-min ischemia and 60-min reperfusion (I/R). IPC was evidenced by improved contractile function and reduced infarction; MnTBAP abrogated these effects. Brief PC pulses increased O(2)(-). during the ischemic but not the reperfusion phase. O(2)(-). increased by 35% within 1 min of ischemia, increased further to 95% after 20 min of ischemia, and decreased slowly on reperfusion. In the IPC group, O(2)(-). was not elevated over 35% during index ischemia and was not increased at all on reperfusion; these effects were abrogated by MnTBAP. Our results directly demonstrate how intracellular ROS increase in intact hearts during IPC and I/R and clarify the role of ROS in triggering and mediating IPC.  相似文献   

10.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF1 alpha and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio 6-keto-PGF1 alpha/TXB2 indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

11.
We have previously shown that epidermal growth factor (EGF) augments cAMP accumulation in the heart and stimulates cardiac adenylyl cyclase via a G protein mediated mechanism (Nair et al., 1989). More recently, employing an antibody against the carboxy-terminus decapeptide of Gs alpha, we have demonstrated that Gs alpha mediates the effects of EGF on cardiac adenylyl cyclase (Nair et al., 1990). Since the heart comprises of a variety of cell types, the purpose of the studies presented here was to determine whether or not the effects of EGF on adenylyl cyclase were mediated in cardiac myocytes or noncardiomyocytes. Therefore, cultures of ventricular cardiomyocytes and noncardiomyocytes from neonatal rat hearts were established and characterized. Apart from the differences in cellular morphology, cardiomyocytes but not the noncardiomyocytes employed in our studies expressed the alpha- and beta-myosin heavy chain (MHC) mRNA and the beta-MHC protein. Additionally, as described previously, treatment of cardiomyocytes with thyroid hormone increased alpha-MHC mRNA and decreased the expression of beta-MHC mRNA, indicating that the cardiomyocytes employed in our studies were responding in a physiologically relevant manner. EGF in a time-dependent manner increased cAMP accumulation in the cardiomyocytes but not in noncardiomyocytes. Maximum and half-maximum effects were observed at 100 nM and 2 nM concentrations of EGF, respectively. As determined by the presence of immunoreactive EGF receptors and tyrosine phosphorylation of the 170 kDa protein in membranes of cardiomyocytes and noncardiomyocytes, both the cell populations contained functional EGF receptors. Therefore, the differential effects of EGF on cAMP accumulation in the two cell populations appear to be due to differential coupling of the EGF receptors to the adenylyl cyclase system rather than the absence of EGF receptors in noncardiomyocytes. Consistent with our previous findings in isolated membranes and perfused rat hearts, EGF-elicited increase in cAMP accumulation in cardiomyocytes did not involve activation of beta-adrenoreceptors and was abolished by prior treatment of cells with cholera toxin. Overall, our findings demonstrate that EGF-elicited increase in cAMP accumulation in the heart is the reflection of changes in cAMP content of cardiomyocytes and not noncardiomyocytes.  相似文献   

12.
We have demonstrated that in vitro brief ischemia activates nuclear factor (NF)-kappaB in rat myocardium. We report in vivo ischemia-reperfusion (I/R)-induced NF-kappaB activation, IkappaB kinase -beta (IKKbeta) activity, and IkappaBalpha phosphorylation and degradation in rat myocardium. Rat hearts were subjected to occlusion of the coronary artery for up to 45 min or occlusion for 15 min followed by reperfusion for up to 3 h. Cytoplasmic and nuclear proteins were isolated from ischemic and nonischemic areas of each heart. NF-kappaB activation was increased in the ischemic area (680%) after 10 min of ischemia and in the nonischemic area (350%) after 15 min of ischemia and remained elevated during prolonged ischemia and reperfusion. IKKbeta activity was markedly increased in ischemic (1,800%) and nonischemic (860%) areas, and phosphorylated IkappaBalpha levels were significantly elevated in ischemic (180%) and nonischemic (280%) areas at 5 min of ischemia and further increased after reperfusion. IkappaBalpha levels were decreased in the ischemic (45%) and nonischemic (36%) areas after 10 min of ischemia and remained low in the ischemic area during prolonged ischemia and reperfusion. The results suggest that in vivo I/R rapidly induces IKKbeta activity and increases IkappaBalpha phosphorylation and degradation, resulting in NF-kappaB activation in the myocardium.  相似文献   

13.
Glutathione is a central component in the antioxidant defences of cells. We have recently reported an early and selective loss of total (reduced plus oxidised) glutathione from mitochondria isolated from rat brain following occlusion of the middle cerebral artery. This mitochondrial glutathione depletion showed an apparent association with the tissue damage that developed during subsequent reperfusion, suggesting that it could be an important determinant of susceptibility to cell loss. In the present study, we have investigated whether in vivo treatment with glutathione ethyl ester can modulate mitochondrial glutathione in the brain and whether this treatment can influence the response to focal ischemia. In further support of our previous findings, middle cerebral artery occlusion caused a duration-dependent partial loss of mitochondrial glutathione. Bilateral injections of glutathione ethyl ester immediately prior to induction of unilateral focal ischemia resulted in a substantial increase in glutathione in mitochondria from the striatum of both the non-ischemic hemisphere (190% of saline-treated controls) and the ischemic hemisphere (240% of controls) at 2h after arterial occlusion. Total tissue glutathione was not affected by the ester treatment at this time. A smaller increase in mitochondrial glutathione was observed at 3h of occlusion in the non-ischemic striatum following ester treatment but at this time point glutathione was not significantly altered in mitochondria from the ischemic hemisphere. Pre-ischemic treatment with glutathione ester did not significantly change the volume of tissue infarction assessed at 48 h following ischemia for 2 or 3h. These studies demonstrate that glutathione ethyl ester is a highly effective modulator of the mitochondrial glutathione pool in the intact brain and provides a useful means for further investigating the role of this antioxidant in the development of tissue damage in ischemia and other brain disorders.  相似文献   

14.
The innate immune system and, in particular, activation of the multi-protein complex known as the inflammasome complex are involved in ischemic injury in myocardial cells. The nucleotide-binding leucine-rich repeat-containing pyrin receptor 3 (NLRP3) inflammasome has been linked to inflammation and NLRP3 is especially important for increased inflammation in atherosclerosis, which may lead to myocardial infarction. Here we investigated how inflammasome molecules are affected in human ischemic heart tissue. Surprisingly the important member of the inflammasome complex, NLRP3, displayed markedly decreased levels in human ischemic heart tissue compared with non ischemic control heart tissue. However, subsequent gene analysis revealed mutations in NLRP3 in human ischemic heart tissues but not in non-ischemic control tissue. Gene polymorphisms in the NLRP3 inflammasome have been shown to be associated with increased IL-1β and IL-18 production and severe inflammation.The autoinflammatory disorder familial Mediterranean fever (FMF) is associated with decreased expression of the Mediterranean fever gene (MEFV) and increased inflammation. We also observed reduced expression of MEFV in ischemic versus non-ischemic heart tissue. Further analyses showed a mutation in MEFV in human ischemic heart tissue but not in non-ischemic control tissue.Our data show that defects in the inflammasome and associated proteins may be involved in promoting ischemic heart disease.  相似文献   

15.
Zhang H  Zhang B  Tang BY  Chen YY  Zhu L  Shen YL 《生理学报》2005,57(4):453-460
实验采用离体大鼠心脏Langendorff灌流模型,观察含巯基(卡托普利)和不含巯基(培哚普利拉)的两种血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitors,ACEI)对抗心肌缺血的作用,并探讨一氧化氮(nitric oxide,NO)和线粒体ATP敏感性钾通道(mimchondrial ATP-sensitive potassium channel,mitoKATP channel)是否参与ACEI的心肌保护作用。结果表明:(1)给予大鼠心脏2min全心停灌和10min复灌作为闽下缺血预处理(subthreshold preconditioning,sPC)、卡托普利或培哚普利拉单独使用,均不能改善长时间缺血复灌(缺血30min+复灌120min)引起的心肌损伤。(2)当两种ACEI分别和sPC联合使用时,与sPC组相比,缺血心脏在长时间缺血后的复灌期问左室舒张末压(left ventricular end-diastolic pressure,LVEDP)明显降低,左宦发展压(left ventricular developed pressure,LVDP)和冠脉流量明显增高,乳酸脱氢酶(lactate dehydrogenase,LDH)的释放量和心肌梗死面积明显低于sPC组。(3)利用NOS抑制剂L-NAME和mitoKATP通道的抑制剂5-HD灌流10min后,可明显抑制卡托普利/培哚普利拉和sPC联合使用引起的LVEDP降低,并使LVDP和冠脉流量降低,LDH的释放量和心肌梗死面积明显增高(P〈0.05)。(4)sPC、卡托普利或培哚普利拉单独使用,心脏NO的产生增加。ACEI和sPC联合使用,与三者单独使用相比NO的浓度亦明显增高(P〈0.05)。结果提示:含与不含巯基的ACEI与闽下缺血预处理联合使用均可使大鼠心脏功能明显改善,其心肌保护作用的机制可能通过NO途径,并和mitoKATP通道的激活有关。  相似文献   

16.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

17.
Brief episodes of myocardial ischemia-reperfusion were shown to be protective against reperfusion injury when used during early reperfusion after a prolonged ischemic episode. This phenomenon has been termed myocardial ischemic postconditioning. In this study, an effect of ischemic postconditioning on persistent reperfusion-induced ventricular fibrillation was studied in the rat isolated heart. 2 minutes of global ischemia on the 15th minute of reperfusion after 30 minutes of regional ischemia effectively abolished the persistent ventricular fibrillation. In non-postconditioned hearts, the ventricular fibrillation continued to the end of reperfusion. The ischemic postconditioning seems to exert a strong antiarrhythmic effect protecting the heart against persistent reperfusion-induced ventricular tachyarrhythmias.  相似文献   

18.
Cardiac contractile activity is usually controlled by intracellular Ca2+, but it can also be modified by oxidizing agents. Incubation of guinea pig heart myofibrils with diamide (3 mM, 1 h) increased basal (no Ca2+) ATPase activity by 580% and abolished Ca2+ dependence. The effect was proportional to diamide concentration (0.01-1 mM) and duration of preincubation (up to 2 h). Dithiothreitol (5 mM, 1 h) reversed most of the basal ATPase activation and restored Ca2+ sensitivity. Other sulfhydryl reagents produced a similar effect but also produced inhibition of total ATPase. In intact cell preparations, diamide produced a slow tonic contraction, consistent with myofibril activation. In the perfused rat heart, 1 mM diamide slowly increased diastolic ventricular pressure; this increase was partially reversed by dithioerythritol. In isolated rat heart myocytes, 1 mM diamide produced a slow tonic contraction, increased contractility in response to stimulation. Cardiocytes superfused for 1 h with buffer containing EGTA to deplete Ca2+ did not contract in response to stimulation but showed a slow tonic contraction with diamide. This contraction could be slowly and only partially reversed by dithioerythritol. Response to stimulation was restored by addition of Ca2+. The results show that diamide can produce contraction in viable cells. This contraction does not require extracellular Ca2+ and is unlikely to involve intracellular Ca2+. The direct activation of myofibrillar ATPase may contribute to the increased myocardial stiffness seen in ischemia and to ischemic contracture.  相似文献   

19.
The modulation of beta-adrenoceptor signaling in the hearts of hindlimb unweighting (HU) simulated weightlessness rats has not been reported. In the present study, we adopted the rat tail suspension for 4 wk to simulate weightlessness; then the effects of simulated microgravity on beta-adrenoceptor signaling were studied. Mean arterial blood pressure (ABP), left ventricular pressure (LVP), systolic function (+dP/dtmax), and diastolic function (-dP/dtmax) were monitored in the course of the in vivo experiment. Single rat ventricular myocyte was obtained by the enzymatic dissociation method. Hemodynamics, myocyte contraction, and cAMP production in response to beta-adrenoceptor stimulation with isoproterenol or adenylyl cyclase stimulation with forskolin were measured, and Gs protein was also determined. Compared with the control group, no significant changes were found in heart weight, body weight and ABP, while LVP and +/-dP/dtmax were significantly reduced. The ABP decrease, LVP increase, and +/-dP/dtmax in response to isoproterenol administration were significantly attenuated in the HU group. The effects of isoproterenol on electrically induced single-cell contraction and cAMP production in myocytes of ventricles in the HU rats were significantly attenuated. The biologically active isoform, Gsalpha (45 kDa) in the heart, was unchanged. Both the increased electrically induced contraction and cAMP production in response to forskolin were also significantly attenuated in the simulated weightlessness rats. Above results indicated that impaired function of adenylyl cyclase causes beta-adrenoceptor desensitization, which may be partly responsible for the depression of cardiac function.  相似文献   

20.
The effect of increased potassium conductance on the genesis of R-wave amplitude increase during acute myocardial ischemia has been studied in the isolated perfused rat heart by simultaneously recording the R-wave amplitude of epicardial electrograms (VEE), heart rate (HR), coronary flow rate (CFR), left ventricular diastolic pressure (LVDP), and left ventricular systolic pressure (LVSP). The experiments were performed during basal and partial or total ischemic conditions at spontaneous or fixed HR. In some experiments, potassium conductance was increased by means of high-calcium (8 mM) or acetylcholine chloride (10(-6) M) perfusion. In the control experiments, partial ischemic perfusion produced an increase in VEE and LVDP and a decrease in HR, CFR, and LVSP; total ischemic perfusion exaggerated these variations. High-calcium perfusion provoked an increase in VEE and LVDP and a decrease in HR, CFR, and LVSP during basal conditions (p less than 0.01 vs. control experiment); these modifications increased progressively during partial ischemic perfusion (p less than 0.01 vs. control experiment) and during total ischemic perfusion (p less than 0.01 vs. control experiment). Perfusion with acetylcholine chloride produced variations similar to those observed in high-calcium solution except that LVDP under basal conditions remained unchanged from control. When the HR was maintained at a constant value by means of atrial pacing the results were similar to those observed in the unpaced hearts. In conclusion, in the isolated perfused rat heart, increasing potassium conductance may influence the genesis of R-wave amplitude increasing during acute myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号