首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the arrival of the monsoonal rains and after months of inactivity during the dry season, the terrestrial crab Gecarcoidea natalis embarks on its annual breeding migration to the coast. The physiological demands of the migration were assessed by determining respiratory gases in the hemolymph, key metabolites, and energy stores in G. natalis during two migratory seasons. At the end of each day of migration the pulmonary hemolymph PO2 decreased by 1-2.5 kPa, but the hemocyanin remained saturated with O2 and the venous reserve was largely unchanged (O2 > 0.4 mmol x l(-1)). The breeding migration of red crabs was accomplished without recourse to anaerobiosis, even though at times walking speeds (up to 6.2 +/- 0.5 m x min(-1)) exceeded those that promoted anaerobiosis in non-migrating crabs and in crabs exercised in the laboratory. In contrast to all previous studies, at the end of each day of migrating, red crabs experienced an alkalosis (up to 0.1 pH units) rather than any acidosis. This alkalosis was removed overnight when the crabs were inactive. Although there were seasonal fluctuations in the glycogen, glucose, and triglyceride stores, crabs engaging in the migration did not draw on these stores and must have fed along the way. In contrast, crabs returning from breeding activities on the shore terraces had significantly depleted glycogen stores. Additionally, in 1993, the male crabs returning from the breeding activities on the terraces were dehydrated and experienced a decrease in muscle tissue water of 11%. In contrast to the breeding migration per se, fighting for burrows in which breeding occurs produced severe anaerobiosis in males, especially the victors: after 135 s of combat, the maximum L-lactate concentration in the hemolymph was 35 mmol x l(-1). It appears that burrowing, courtship, and mating are more demanding than the migration itself. Furthermore, the data provide evidence that the metabolic responses of migrating individuals of G. natalis might be different from those at other times of the year.  相似文献   

2.
The African wild ass (Equus africanus) is the most endangered wild equid in the world and is listed as a Critically Endangered (CR) on the IUCN Red list. Today, only relict populations remain in Ethiopia and Eritrea. The current Ethiopian population persists in the Danakil Desert at a very low density. Wildlife managers need to identify the extent of the remaining suitable habitat and understand human–wildlife interactions for appropriate conservation strategies. This study employed the maximum entropy model (Maxent) to determine suitable habitat and seasonal distribution of African wild ass in the Danakil Desert of Ethiopia. Field surveys were conducted four times annually, twice during the wet season and twice during the dry season, for 2 years. Field data and predictor variables were separated into the dry and wet seasons, and models were generated for each season independently. Distance from water, distance from settlements, herbaceous cover and slope were the best predictors of suitable habitat for both dry and wet seasons. Evaluations of model performances were high with area under the curve (AUC) values of 0.94 and 0.95 for the dry and wet seasons, respectively. Our results will be critical for identifying the available suitable habitat that should be conserved to safeguard this species from extinction.  相似文献   

3.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

4.
This study was conducted to examine the potential influence of salinity, a proxy for freshwater inflow, on the prevalence of the castrator parasite Loxothylacus panopaei on saltmarsh mud crabs Panopeus obesus on SW Florida oyster reefs. Spatial and seasonal patterns of the presence of potential host crabs and the prevalence of the parasite were assessed in the Caloosahatchee, Estero, and Faka Union estuaries. Lift nets (1 m2) containing 5 1 of oyster clusters were deployed on intertidal reefs at 3 sites along the salinity gradient of each estuary. Nets were deployed during 3 seasonally dry and 3 seasonally wet months for a period of 30 d. P. obesus densities tended to increase downstream in higher salinity waters, with crabs being absent from the upper station in the Caloosahatchee during both seasons and absent from the upper station of the Faka Union during wet months. Parasite prevalence was reduced upstream in each estuary during wet months compared to dry months, and for those estuaries that experienced higher relative levels of freshwater inflow. Furthermore, parasite prevalence was positively correlated with the mean salinity of capture of host crabs. Based on the distribution of P. obesus and the above patterns related to salinity, it appears that freshwater inflow and seasonal rains might regulate the prevalence of this parasite in SW Florida by creating spatiotemporal, low salinity refuges for its host.  相似文献   

5.
An investigation into the population status and distribution of the African buffalo (Syncerus caffer Sparrman, 1779) in Chebera Churchura National Park, Ethiopia, was carried out during the wet and dry seasons of 2012–2015. This study tested the hypothesis that buffalo would demonstrate seasonal habitat preferences and changes in population density. Sample counts were carried out in an area of 1215 km2. The estimated buffalo population was 5193 individuals, with the population density of 4.3/km2. The population showed an increase from 2617 to 5194 individuals during 2006–2015. Males comprised 42.6%, while females 46.7% of the population. Age structure was dominated by adults, which constituted 52.5% of the total population. Subadults comprised 24.3% and young 12.4% of the population. Larger herds of up to 30 individuals were observed during the wet season, and smaller herds of a minimum of four individuals were seen during the dry season. The mean herd sizes during the wet and dry seasons were 29.59 and 16.95, respectively. They were observed more in the riverine vegetation types during the dry season. Of the total, 57.6% utilized riverine habitat during the dry season, whereas 39.8% used this habitat during the wet season. Relative abundance of food sources, green vegetation cover and availability of water were the major factors governing their distribution in the present study area.  相似文献   

6.
To understand habitat preferences, seasonal abundance and diets of rodents in wet and dry season surveys were conducted in Alage, Southern Ethiopia. Sherman and snap traps were used to capture rodents from the four habitats: bushland, Acacia woodland, maize and wheat farmlands. A total of 3312 trap nights, from the four trapping habitats, yielded 776 individuals that represented 11 species of rodents. The distribution of rodents varied between habitats and seasons. Wet season rodent abundance was 52.3% while in the dry season it was 47.7%. Seasonal differences in species abundance were insignificant. Bushland habitat had high wet and dry season abundances with 137 and 211 individuals, respectively. Abundance was low in maize farm (57 individuals) in the wet season and wheat farm (10 individuals) in the dry season. Stomach content composition analysis of snap‐trapped rodents from different habitats showed differences between species and across seasons. Six rodent species were recorded as pests on the farmlands in this study area. In conclusion, variation in habitat preferences and diet of rodents in different habitats and across seasons might be due to the role of ground cover and food sources.  相似文献   

7.
于2005年10月至2006年4月调查了埃塞俄比亚森可勒斯韦恩麋羚保护区旱季和湿季斯韦恩麋羚(Alcelaphus buselaphus swaynei)的种群现状与结构.根据植被类型、道路和沟谷,将研究区划分为5个区域,并且调查了保护区外的一块休耕农地.利用全部计数法计数了每个区域内的斯韦恩麋羚,在28 km2的区域内共统计到283只(湿季)和351只(旱季)麋羚,湿季和旱季的麋羚数量变化显著,其季节间差异是由旱季的出生高峰造成的.斯韦恩麋羚种群中雌性个体占42.7%、雄性占36.0%、幼羚占21.3%.某些区域的麋羚数量要高于其它区域,且无论湿季或旱季斯韦恩麋羚多集中在狼尾草高草地中.斯韦恩麋羚的种群结构随季节而变化,其大集群经常出现在湿季而旱季集群较小.斯韦恩麋羚的种群动态因保护程度的不同在不同时期呈不规则性变化  相似文献   

8.
K. Christian    B. Green    G. Bedford    K. Newgrain 《Journal of Zoology》1996,240(2):383-396
The field metabolic rates (FMR) and water fluxes of Varanus scalaris were measured during the wet and dry seasons by the doubly-labelled water technique. Seasonal measurements of standard (night-time) metabolism (SMR) and resting (daytime) metabolism (RMR) were made in the laboratory at 18, 24, 30 and 36°C, and maximal oxygen consumption was measured at 36°C on a motorized treadmill. This population was active throughout the year. In the wet season, the mean FMR was 7.8 kJ day−1 (128.0 kJkg−1 day−1; mean mass = 66.4 g, n = 13), and during the dry season the mean was 5.0 kJ day−1 (67.6 kJ kg−1 day−1; mean mass = 77.4 g, n = 17). The mean water flux rates for these animals were 3.6 and 1.2 ml day−1, respectively (60.4 and 16.6 ml kg−1 day−1). The seasonal means of FMR and water flux were significantly different by ANCOVA ( P < 0.0001). Measurements of SMR and RMR were significantly higher in the wet season (ANCOVA: P < 0.0001), but we found no difference in the maximal oxygen consumption between seasons (ANCOVA: P = 0.6). The maximal oxygen consumption of the lizards on the treadmill (2.9 ml min−1= 1.8 ml g−1 h−1), mean mass = 97.4 g, n = 16) was 20 times that of the SMR at the same temperature during the dry season, and 11 times that of the SMR during the wet season. The seasonal differences in FMR were attributable to: changes in SMR (12.2%) and RMR (16.4%); differences in night-time body temperatures (11.3) and daytime body temperatures (16.4%); and activity (broadly defined to include locomotion, digestion, and reproductive costs (43.7%).  相似文献   

9.
Christian KA  Webb JK  Schultz TJ 《Oecologia》2003,136(4):515-523
We studied the physiological ecology of bluetongue lizards (Tiliqua scincoides) on the Adelaide River floodplain in tropical Australia to determine the seasonal patterns of energy expenditure and to determine the mechanisms by which seasonal differences were achieved. Field metabolic rates (FMR) were significantly lower in the dry season (37.6 kJ kg(-1) day(-1); n=9) than in the wet (127.3 kJ kg(-1) day(-1); n=7). Water flux was also lower in the dry season (6.8 ml kg(-1) day(-1); n=9) than in the wet (39.4 ml kg(-1) day(-1); n=7). Measurements of body temperatures (T(b)) and movements of free-ranging animals, and standard metabolic rate (SMR) of recently caught animals, allowed a detailed analysis of energy budgets for wet and dry seasons. In the dry, bluetongue lizards expended 90 kJ kg(-1) day(-1) less energy than in the wet season. Unlike some other lizards of the wet-dry tropics, SMR did not differ between seasons. About 5% of the seasonal difference in FMR was due to lower night time T(b) during the dry season, and about 7% was due to lower diurnal T(b). The remaining 88% of the decrease in energy expended in the dry season was due to a substantial decrease in other costs that may include reproduction, growth, digestion and activity. If we assume the animals fed daily and the costs of digestion are taken into account, the estimates are: 14% of the savings result from lower T(b) at night, 20% from lower T(b) in the day, and 66% result from decreased activity. It is therefore apparent that, unlike some agamid and varanid lizards that use a combination of behavioural and physiological mechanisms to conserve energy when food and water are limited, bluetongue lizards primarily use behavioural mechanisms to achieve a dramatic reduction in energy expenditure in the dry season.  相似文献   

10.
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape‐scale attributes. Generalized linear mixed‐effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment‐matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.  相似文献   

11.
Seasonal variation in various thermoregulatory, metabolic and ventilatory parameters was examined for southern brown bandicoots (Isoodon obesulus fusciventer) from a Mediterranean climate near Perth, Western Australia. There was significant seasonal variation over the four annual seasons at thermoneutrality (Ta=30 degrees C) in body temperature, oxygen consumption, carbon dioxide production, respiratory exchange ratio, total evaporative water loss, wet and dry thermal conductance and tidal volume but not mass, ventilatory frequency, minute volume or oxygen extraction efficiency. Only carbon dioxide production and respiratory exchange ratio showed an annual pattern that was significantly related to season, with both being significantly higher in winter, presumably as a result of greater and higher quality food availability.  相似文献   

12.
The responses of animals to seasonal food shortages can have important consequences for population dynamics and the structure and function of food webs. We investigated how an ambush foraging snake, the northern death adder Acanthophis praelongus, responds to seasonal fluctuations in prey availability in its tropical environment. In the dry season, field metabolic rates and water flux, as measured by doubly labeled water, were significantly lower than in the wet season. Unlike some other reptiles of the wet-dry tropics, death adders showed no seasonal difference in their resting metabolism. About 94% of the decrease in energy expended in the dry season was due to a decrease in activity and digestion, with lower body temperatures accounting for the remainder. In the dry season, death adders were less active and moved shorter distances between foraging sites than in the wet season. Analysis of energy expenditure suggested that adders fed no more than every 2-3 wk in the dry season but fed more frequently during the wet season. Unlike many lizards that cease feeding during the dry season, death adders remain active and attempt to maximize their energy intake year-round.  相似文献   

13.
A yearlong arboreal baiting survey of ants was conducted during 1983 on Barro Colorado Island, Panama. Because of a severe El Nino event, the 1983 dry season in Panama was exceptionally long and dry with a distinct boundary between the dry and wet seasons. Baits, located on tree trunks, attracted both terrestrial and arboreal ants, allowing comparisons between the two groups. Species composition at baits changed dramatically with season. Baits were primarily occupied by arboreal species during the dry season, while wet season baits were occupied mostly by terrestrial species. Arboreal and terrestrial ants differed markedly in their preferences for protein‐ or carbohydrate‐based baits; arboreal ants preferred protein‐based baits and terrestrial ants preferred carbohydrate‐based baits. Foraging preference for protein suggests that protein resources were limiting for arboreal ants, particularly during the dry season, and that carbohydrate resources were limiting for terrestrial ants. Fundamental differences in arboreal and terrestrial habitats may promote the differences in foraging strategies observed during an annual cycle in a seasonal tropical forest.  相似文献   

14.
In karst regions, forests often grow on bedrock outcrops, however the water sources used by the forest vegetation are not known. This study aimed at investigating whether there were seasonal shifts (dry/wet season) of water sources for plants growing on the continuous dolostone outcrops, and comparing their differences with those growing on nearby thin soils in karst areas of southwest China. Rainwater, soil water within 0–30 cm depths, spring water (as a reflection of local deep water sources) and plant xylem water were sampled in March (late dry season) and July (mid rainy season) 2009, respectively. A direct inference approach and the IsoSource mixing model were used to estimate the contributions of different sources to the plant xylem water. On the outcrops, the deciduous tree species Radermachera sinica mainly used deep water sources during the dry season and a mixture of rainwater and deep water sources during the wet season. By contrast, the deciduous small shrub Alchornea trewioides largely relied on recent rainwater during both dry and wet seasons. Three non-deciduous species (Sterculia euosma, Schefflera octophylla and Ficus orthoneura) appear to rely on deep water sources during the wet seasons. In nearby thin soils, R. sinica mainly utilized deep water in the dry season and a mixture of soil water and deep water in the wet season. A. trewioides relied on the same water sources (rainwater-derived soil water) in the different seasons. The above results indicate that inter-specific differences in rooting patterns and leaf phenologies may lead to the differences in the sources of water used by coexisting plant species in karst regions.  相似文献   

15.
Live Norway lobsters (Nephrops norvegicus L.) were trawled at depths of 30 to 55 m off the coast of Jutland (Denmark) in late winter (March) and in summer (August) in 2006. Water temperatures at the bottom and surface of the sea were 7 °C and 2 °C during the winter, and 12 °C and 21 °C in the summer, respectively. The recovery of specific physiological and metabolic variables from the intense stresses associated with capture (trawling and air-exposure during sorting) was followed in seawater at 5 °C in winter or 18 °C in summer. Recovery was compared in lobsters held individually in two different live-storage positions, either resting vertically on the tail or sitting horizontally. In winter, many animals were alive when brought on board and approximately 86% were still alive at the end of experimentation (96 h). In summer very few animals were alive when brought on board and, of these, approximately 95% were dead at 24 h. When compared with values measured in laboratory controls, the stresses of capture elicited very high haemolymph lactate contents in both seasons, although levels recovered within 24 h. Trawling also caused very high haemolymph glucose concentrations, which differed with season. In winter, haemolymph glucose was elevated for 24 h to levels significantly higher than in summer. In summer, glucose had returned to control levels by 4 h. At 4 h after trawling, haemolymph O2 status was not markedly influenced in either season, but there were significant disturbances of acid-base status. In winter, a potential metabolic lactic acidosis was compensated by a marked respiratory alkalosis, with significantly increased haemolymph pH and decreased CO2 total content and partial pressure. These effects disappeared gradually over 96 h. Summer lobsters showed combined metabolic and respiratory acidosis at 4 h, although this had recovered to control values in the small number of survivors sampled at 24 h. The capture stresses elicited very high haemolymph crustacean hyperglycaemic hormone (CHH) titres, significantly higher in summer than in winter. In winter, CHH titre had declined significantly at 24 h, whereas it exhibited a further significant increase at 24 h in summer. Live-storage position had no significant effect on survival or recovery from capture stresses in either season. The results demonstrate that Nephrops were much more stressed by trawling at high summer temperatures and had difficulty recovering from this, with pronounced negative effects on their survival, irrespective of their live-storage position.  相似文献   

16.
Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gs declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gs and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.  相似文献   

17.
One of the fundamental questions in animal ecology concerns the activity pattern of animals and the environmental and intrinsic factors that influence such dynamics. This study tested the hypotheses that activity time budgets of the African buffalo appeared to vary by season and times of day and predicted that buffalo would express unequal proportion of time for different activity patterns during the wet and dry seasons in Chebera Churchura National Park (CCNP). An investigation on the diurnal activity budget of the African buffalo was carried out during the wet and dry seasons of 2012–2014 in the Chebera Churchura National Park, Ethiopia, using focal‐animal sampling method. Buffalo spent a greater proportion of the time in feeding and resting/ruminating activities in both the wet and dry seasons. Feeding and resting (lying down and standing) were the predominant activities (87.14% of the diurnal active period), 48.95% time spent feeding during the dry season and 44.91% during the wet season. There was a significant decrease in feeding and an increase in resting from dry seasons to wet seasons. Daytime grazing and resting periods during the wet season were estimated to be 5.39 h and 4.98 h, respectively. Morning and the late afternoon activity peaks were more pronounced during the dry season than the wet season. Therefore, feeding and resting time was influenced by the time of day and the seasons. But there were no significant difference in time allocation for other activities in both the wet and dry seasons. The study has implications for understanding animal activity budget across species, particularly relationships between temperature and season.  相似文献   

18.
Population dynamics of the brown planthopper (BPH),Nilaparvata lugens Stål, were investigated in paddy fields in the coastal lowland of West Java, Indonesia, where rice is cultivated twice a year, in the wet and dry cropping seasons. Distinct differences in the basic features of population dynamics were detected between the two rice cropping seasons: (1) In the wet season, BPH populations multiplied rapidly in the period from initial to peak generation, reaching quite often the destructive level despite the low density of initial immigrants. However, in the dry season, the population growth rate and the peak population density were much lower than those in the wet season. The abundance of natural enemies such as arthropod predators played a major role in determining such a difference in seasonal population development. (2) The density at the peak generation or the occurrence of outbreaks in each field was predictable in the wet season with fairly high accuracy on the basis of the density at the initial or previous seasonal generations. In the dry season, however, the rate of population growth and the peak population density widely varied among the fields depending on the water status in each field. (3) Density-dependent processes to regulate the population density were detected in both cropping seasons. In the wet season, the regulatory processes were only detected in such high densities as cause the considerable deterioration of host plants, which suggested that the processes were largely attributable to intra-specific competition. In the dry season, however, the regulatory processes operated at a much lower density in the earlier stages of the crops. The results of an analysis of adult longevity or residence period suggested that the density-dependent dispersal of macropterous adults played an important role in stabilizing the population fluctuation among the fields in the early dry season.  相似文献   

19.
The terrestrial crab Gecarcoidea natalis is endemic to the forests of Christmas Island but must migrate each year to the coast to breed. During 1993 and 1995, radio-tracking, mark and recapture, and counting methods were used to establish the routes, walking speeds, direction of travel, and destinations of migrating crabs, as well as crab numbers and distribution. The density of crabs ranged from 0.09 to 0.57 crabs per square meter, which gave a population estimate of 43.7 million adult crabs on the island. During the dry season the crabs were relatively inactive but on arrival of the wet season immediately began their migration. The crabs generally walked in straight lines, and most crabs from around the Island traveled toward the northwest shore instead of simply walking toward the nearest shore. The maximum recorded distance walked by a red crab in one day was 1460 m, but the mean was 680 m per day in 1993 and 330 m in 1995. Comparing the 1993 and 1995 study seasons, there was a 3-week difference in the timing of the start of the migration, but the spawning date was fixed by the lunar phase and took place 17 to 18 days after mating. In 1993, late rain prompted a "rushed" migration and crabs walked directly to their shore destinations; in contrast, in 1995 most crabs made stops of 1 to 7 days during the downward migration. By giving the crabs a chance to feed along the way and minimizing the time that the population was concentrated near the shore, these stops may be important in ensuring that the animals have enough food after the long dry season. Furthermore, this behavior implies that the crabs are able to judge how far away they are from the shore during the migration.  相似文献   

20.
The influence of elephants on woody vegetation cover varies from place to place. In part this may be due to the way elephants utilize space across landscapes and within their home ranges in response to the availability and distribution of food. We used location data from 18 cows at six study sites across an east to west rainfall gradient in southern Africa to test whether wet- and dry-season home-range sizes, evenness of space use within seasonal home ranges and range overlap between seasons and between years, differed between wet and dry savannas. We then tested whether the quantity, distribution and seasonal stability in vegetation productivity, a coarse measure of food for elephants, explained differences. Elephants in wet savannas had smaller wet- and dry-season home ranges and also returned to a higher proportion of previously visited grid cells between seasons and between years than elephants living in dry savannas. Wet-season home-range sizes were explained by seasonal vegetation productivity while dry-season home-range sizes were explained by heterogeneity in the distribution of vegetation productivity. The influence of the latter on dry-season home ranges differed among structural vegetation classes. Range overlap between seasons and between years was related to inter-seasonal and inter-annual stability in vegetation productivity, respectively. Evenness of elephant spatial use within home ranges did not differ between savanna types, but it was explained by seasonal vegetation productivity and heterogeneity in the distribution of vegetation productivity during the wet season. Differences in elephant spatial use patterns between wet and dry savannas according to vegetation structure and season may need to be included in the development of site-specific objectives and management approaches for African elephants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号