首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P L Kaplan  S Simon    W Eckhart 《Journal of virology》1985,56(3):1023-1026
A murine retrovirus encoding the middle T protein of polyomavirus infected and transformed nonestablished chicken embryo cells. The infected cultures formed colonies in soft agar-containing medium and released infectious transforming virus. Middle T protein expressed in the transformed chicken cells associated with p60c-src and, in immunoprecipitates, enhanced the tyrosine protein kinase activity of p60c-src.  相似文献   

2.
p27(Kip1) (p27) is a tumor suppressor whose stability is controlled by proteasome-mediated degradation, a process directed in part by cyclin-dependent kinase 2 (CDK2)-mediated phosphorylation of p27 at Thr(187) and its subsequent interaction with the Skp1-Cullin-F-box protein/Skp2 (Skp2) ubiquitin ligase. The present study shows that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) arrests ovarian cancer cells in G(1) by stabilizing the p27 protein. 1,25(OH)(2)D(3) initiates a chain of events by decreasing the amounts of cyclin E and cyclin E-associated CDK2 activity. As a result, p27 phosphorylation at Thr(187) and consequently the interaction with Skp2 are decreased. 1,25(OH)(2)D(3) also increases p27 stability by decreasing the abundance of Skp2. It is the combined effect of 1,25(OH)(2)D(3) on both the CDK2-dependent phosphorylation of p27, and thus its affinity for Skp2, and Skp2 expression that dramatically increases the stability of the p27 protein. Similar to its effects in ovarian cancer cells, 1,25(OH)(2)D(3) induces p27 accumulation in wild type mouse embryo fibroblasts and arrests wild type but not p27-null mouse embryo fibroblasts in G(1). Stable expression of Skp2 in OVCAR3 cells diminishes the G(1) arrest and decreases the growth response to 1,25(OH)(2)D(3). Taken together, the results of this study identify p27 as the key mediator of 1,25(OH)(2)D(3)-induced growth suppression in G(1) and show that the hormone achieves this by decreasing the activity of CDK2 and reducing the abundance of Skp2, which act together to degrade p27.  相似文献   

3.
Serum stimulation of quiescent 3T3 cells immediately induces the synthesis of a set of basic proteins that are absent in growing cells. The induction of some of these polypeptides p27 (27 kd), p35 (35 kd), p38 (38 kd) and p69 (69 kd) can be 'superinduced' in the presence of cycloheximide and completely blocked by actinomycin D. In vitro translation experiments show that the levels of mRNA coding for these proteins in serum-stimulated cells are several fold higher than in non-stimulated cells. Induction of p35 and p38 is transient (4 h); in contrast, p27 and p69 are induced for a longer period (8 h). Platelet-derived growth factor and fibroblast growth factor strongly induce p35 and p69 but weakly induce p27 and p38. Cultures of primary mouse fibroblasts express p27 but not the other polypeptides at levels similar to those found in serum-stimulated quiescent 3T3 cells. Enucleation and Triton extraction of cells show that p27 is a soluble cytoplasmic protein. The synthesis of this protein in density-arrested or serum-deprived primary cultures is only 20% reduced showing that the expression of p27 in these cells is independent of cell proliferation.  相似文献   

4.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

5.
Hsp27 is a small heat shock protein (shsp) regulating stress tolerance and increasingly thought to play roles in tissue homeostasis and differentiation. The zebrafish Danio rerio is an important model for the study of developmental processes, but little is known regarding shsps in this animal. Here, we report the sequence, expression, regulation, and function of a zebrafish protein (zfHsp27) homologous to human Hsp27. zfHsp27 contains three conserved phosphorylatable serines and a cysteine important for regulation of apoptosis, but it lacks much of a C-terminal tail domain and shows low homology in two putative actin interacting domains that are features of mammalian Hsp27. zfHsp27 mRNA is most abundant in adult skeletal muscle and heart and is upregulated during early embryogenesis. zfHsp27 expressed in mammalian fibroblasts was phosphorylated in response to heat stress and anisomycin, and this phosphorylation was prevented by treatment with SB202190, an inhibitor of p38 MAPK. Expression of zfHsp27 and human Hsp27 in mammalian fibroblasts promoted a similar degree of tolerance to heat stress. zfHsp27 fusion proteins entered the nucleus and associated with the cytoskeleton of heat stressed cells in vitro and in zebrafish embryos. These results reveal conservation in regulation and function of mammalian and teleost Hsp27 proteins and define zebrafish as a new model for the study of Hsp27 function.  相似文献   

6.
In cells transformed by mutant mouse p53 plus ras, the former protein is found to be complexed with the heat-shock protein cognate hsc70. To determine whether hsc70 can directly affect neoplastic transformation, nonestablished rat embryo fibroblasts (REF) were transfected with rat genomic hsc70 DNA in conjunction with various oncogenes. We report here that the hsc70 gene could efficiently suppress focus induction by mutant p53 plus ras, as well as by myc plus ras. No inhibitory effect of hsc70 was detectable in assays monitoring the ability of REF to be immortalized by mutant p53, arguing against a nonspecific deleterious effect of the hsc70 genomic clone on REF survival and proliferation. Lines generated in the presence of the hsc70 plasmid produced augmented levels of hsc70. Plasmids encoding only short NH2-terminal fragments of hsc70 could also, in some cases, partially reduce oncogene-mediated focus formation. However, a maximal inhibitory effect required the production of a functional hsc70 protein. The data presented here raise the possibility that hsc70 may be directly involved in the modulation of oncogene-mediated transformation.  相似文献   

7.
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.  相似文献   

8.
Hepatocyte growth factor/scatter factor (HGF/SF) is considered to be a mesenchymal-derived factor that acts via a dual system receptor, consisting of the MET receptor and proteoglycans present on adjacent epithelial cells. Surprisingly, HGS/SF stimulated the migration of rat mammary (Rama) 27 fibroblasts, although it failed to stimulate their proliferation. HGF/SF stimulated a transient activation of mitogen-activated protein kinases p44 and p42 (p42/44(MAPK)), with a maximum level of dual phosphorylation of p42/44(MAPK) occurring 10-15 min after the addition of the growth factor, which was followed by a rapid decrease to near basal levels after 20 min. Interestingly, a second phase of p42/44(MAPK) dual phosphorylation was observed at later times (3 h to 10 h). PD098059, a specific inhibitor of MEK-1, prevented the dual phosphorylation of p42/44(MAPK) and also the phosphorylation of p90(RSK) (ribosomal subunit S6 kinase), which mirrored the kinetics of p42/44(MAPK) phosphorylation. Moreover, PD098059 prevented the HGF/SF-induced migration of Rama 27 cells. HGF/SF also induced an early increase in the phosphorylation of protein kinase B/Akt. Akt phosphorylation was elevated 15 min after the addition of HGF/SF and then declined to basal levels by 30 min. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PtdIns3K), prevented the increase in Akt phosphorylation and abolished HGF/SF-induced migration of fibroblasts. PD098059 also inhibited the stimulation of Akt phosphorylation by HGF/SF and wortmannin similarly inhibited the stimulation of p42/44(MAPK) dual phosphorylation. These results suggest that HGF/SF-induced motility depends on both the transient dual phosphorylation of p42/44(MAPK) and the activation of PtdIns3K in Rama 27 fibroblasts and that these pathways are mutually dependent.  相似文献   

9.
PRAK, a novel protein kinase regulated by the p38 MAP kinase.   总被引:22,自引:2,他引:20       下载免费PDF全文
L New  Y Jiang  M Zhao  K Liu  W Zhu  L J Flood  Y Kato  G C Parry    J Han 《The EMBO journal》1998,17(12):3372-3384
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.  相似文献   

10.
The p42/p44 mitogen-activated protein (MAP) kinase is stimulated by various mitogenic stimuli, and its sustained activation is necessary for cell cycle G(1) progression and G(1)/S transition. G(1) progression and G(1)/S transition also depend on sequential cyclin-dependent kinase (CDK) activation. Here, we demonstrate that MAP kinase inhibition leads to accumulation of the CDK inhibitor p27(Kip1) in NIH 3T3 cells. Blocking the proteasome-dependent degradation of p27(Kip1) impaired this accumulation, suggesting that MAP kinase does not act on p27(Kip1) protein synthesis. In the absence of extracellular signals (growth factors or cell adhesion), genetic activation of MAP kinase decreased the expression of p27(Kip1) as assessed by cotransfection experiments and by immunofluorescence detection. Importantly, MAP kinase activation also decreased the expression of a p27(Kip1) mutant, which cannot be phosphorylated by CDK2, suggesting that MAP kinase-dependent p27(Kip1) regulation is CDK2-independent. Accordingly, expression of dominant-negative CDK2 did not impair the down-regulation of p27(Kip1) induced by MAP kinase activation. These data demonstrate that the MAP kinase pathway regulates p27(Kip1) expression in fibroblasts essentially through a degradation mechanism, independently of p27(Kip1) phosphorylation by CDK2. This strengthens the role of this CDK inhibitor as a key effector of G(1) growth arrest, whose expression can be controlled by extracellular stimuli-dependent signaling pathways.  相似文献   

11.
We report here that ectopically expressed wild-type p53 protein showed more than 6 times longer half-life than normal human fibroblasts in NCl-H1299, a widely used cell line derived from non-small cell lung carcinoma lacking the expression of p53 protein. We found no abnormality in the phosphorylation and ubiquitination of p53, and the expression levels of MDM2. Although proteasome activity measured in vitro was not significantly different between the tumor cell line and normal human fibroblasts, proteasome inhibitors, ALLN, MG115, and MG132, did not accumulate p53 protein in the tumor cell line, but did accumulate p53 in normal human cells. These results provide a novel mechanism, by which p53 is stabilized in tumor cells, and they suggest that a mediator should exist between ubiquitinated p53 and proteasome, which may be defective in H1299 cells.  相似文献   

12.
13.
WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) plays an important role in the proliferation of tumor cells and the lifespan of Caenorhabditis elegans. However, the role of WWP1 in cellular senescence is still unknown. Here, we show that the expression patterns of p27(Kip1) and WWP1 are inversely correlated during cellular senescence. Moreover, the overexpression of WWP1 delayed senescence, whereas the knockdown of WWP1 led to premature senescence in human fibroblasts. Furthermore, we demonstrate that WWP1 repressed endogenous p27(Kip1) expression through ubiquitin-proteasome-mediated degradation. Additionally, WWP1 had a strong preference for catalyzing the Lys-48-linked polyubiquitination of p27(Kip1) in vitro. Finally, we demonstrate that WWP1 markedly inhibited the replicative senescence induced by p27(Kip1) by promoting p27(Kip1) degradation. Therefore, our study provides a new molecular mechanism for the regulation of cellular senescence.  相似文献   

14.
15.
Palmitoylation can regulate both the affinity for membranes and the biological activity of proteins. To study the importance of the palmitoylation of the Src-like tyrosine protein kinase p56lck in the function of the protein, Cys-3, Cys-5, or both were mutated to serine, and the mutant proteins were expressed stably in fibroblasts and T cells. Both Cys-3 and Cys-5 were apparent sites of palmitoylation in Lck expressed in fibroblasts, as only the simultaneous mutation of both Cys-3 and Cys-5 caused a large reduction in the incorporation of [3H]palmitic acid. The double mutant S3/5Lck was no longer membrane bound when examined by either immunofluorescence or cell fractionation. This indicated that palmitoylation was required for association of Lck with the plasma membrane. Since the S3/5Lck protein was myristoylated, myristoylation of Lck is not sufficient for membrane binding. When Cys-3, Cys-5, or both Cys-3 and Cys-5 were changed to serine in activated F505Lck, palmitoylation of either Cys-3 or Cys-5 was found to be necessary and sufficient for the transformation of fibroblasts and for the induction of spontaneous, antigen-independent interleukin-2 production in the T-helper cell line DO-11.10. Nonpalmitoylated F505Lck exhibited little activity in vivo, where it did not induce elevated levels of tyrosine phosphorylation, and in vitro, where it was unable to phosphorylate angiotensin in an in vitro kinase assay. These findings suggest that F505Lck must be anchored stably to membranes to become activated. Because palmitoylation is dynamic, it may be involved in regulating the cellular localization of p56(lck), and consequently its activity, by altering the proximity of p56(lck) to its activators and/or targets.  相似文献   

16.
Cell cycle progression is negatively regulated by the pocket proteins pRb, p107, and p130. However, the mechanisms responsible for this inhibition are not fully understood. Here, we show that overexpression of p107 in fibroblasts inhibits Cdk2 activation and delays S phase entry. The inhibition of Cdk2 activity is correlated with the accumulation of p27, consequent to a decreased degradation of the protein, with no change of Thr187 phosphorylation. Instead, we observed a marked decrease in the abundance of the F-box receptor Skp2 in p107-overexpressing cells. Reciprocally, Skp2 accumulates to higher levels in p107-/- embryonic fibroblasts. Ectopic expression of Skp2 restores p27 down-regulation and DNA synthesis to the levels observed in parental cells, whereas inactivation of Skp2 abrogates the inhibitory effect of p107 on S phase entry. We further show that the serum-dependent increase in Skp2 half-life observed during G1 progression is impaired in cells overexpressing p107. We propose that p107, in addition to its interaction with E2F, inhibits cell proliferation through the control of Skp2 expression and the resulting stabilization of p27.  相似文献   

17.
18.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

19.
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16‐defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16‐transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re‐feeding to induce cell cycle re‐entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16‐associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re‐entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by 3H‐thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16‐transfected CMT27A and CMT27H cells exited cell cycle post‐serum‐starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post‐serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non‐proliferative states. J. Cell. Biochem. 114: 1355–1363, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号