首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse-radiolysis experiments demonstrate that both the radical ion CIUra-/- and the protonated radical CIUraH- Of chlorouracil will transfer electrons to p-nitroacetophenone (PNAP). The reaction of CIUraH- is complicated by unknown reaction with PNAP below pH 4-4. Rate constants measured for reactions (2) and (3) are kappa2=5-3 x 109 and kappa3=3-3 x 109 M-1 sec -1. See article. An independent determination of the rate-constant for dissociation of the radical ion (equation (1)) was also obtained (kappa1=0-7 x 105 sec -1). See article.  相似文献   

2.
Radical formation in single crystals of hypoxanthine.HCl.H2O, inosine and Na2-5'-IMP.(7.5 H2O) by X-irradiation has been studied using electron-spin-resonance spectroscopy at 9.5 and 35 GHz. In all crystals both H-addition radicals at position C2 and C8 of the purine ring are found. The coupling constants of these two radicals are different and depend strongly on the protonation state of the base. INDO-calculations indicate that the C8-radical is protonated at O6. In Na2-5'-IMP OH-addition radicals at position C2 of the purine ring are formed. Electron adduct radicals are found in the neutral and the N7-protonated base after X-irradiation at 77 K. In Na2-5'-IMP no electron adduct is formed but a radical which probably is the cation. In hypoxanthine.HCl.H2O a radical could be observed after X-irradiation at 77 K, which results from addition of a Cl- to the nitrogen N1.  相似文献   

3.
The proton nuclear magnetic resonance spectrum of azurin from Alcaligenes denitrificans at pH 6.0 and 309 K is reported. Proton signals from all methionine and histidine residues (among them the copper ligands) have been assigned. The data have been used to study the pH behaviour of His35 and to establish the electron self-exchange rate of the protein. His35 appears to be protonated at pH less than 4.5, possibly after rupture of a salt bridge. No effects of this protonation on the tertiary structure around the copper site are observed, however, contrary to the case of Pseudomonas aeruginosa azurin. The electron self-exchange rate amounts to 4 x 10(5) M-1 S-1 at pH 6.7 and 297 K. The data support the conclusion that the electron self-exchange takes place by way of the hydrophobic surface patch around His117, and that His35 is not involved in this reaction. Oxidation of azurin increases the acidity of the freely titrating His32 and His83 by 0.07 and 0.25 pKa units, respectively. The data can be used to test the theory of electrostatic interactions in proteins. The optical extinction coefficient at 625 nm was experimentally determined and amounts to 4.8(+/- 0.1) x 10(3) M-1 cm-1.  相似文献   

4.
DFT calculations on the relative stability of various nucleobase radicals induced by e(aq)(-) and (*)OH have been carried out for assessing the energetics of rearrangements and water elimination reactions, taking the solvent effect of water into account. Uracil and thymine radical anions are protonated fast at O2 and O4, whereby the O2-protonated anions are higher in energy (50 kJ mol(-1), equivalent to a 9-unit lower pK(a)). The experimentally observed pK(a)=7 is thus that of the O4-protonated species. Thermodynamically favored protonation occurs slowly at C6 (driving force, thymine: 49 kJ mol(-1), uracil: 29 kJ mol(-1)). The cytosine radical anion is rapidly protonated by water at N3. Final protonation at C6 is disfavored here. The kinetically favored pyrimidine C5 (*)OH adducts rearrange into the thermodynamically favored C6 (*)OH adducts (driving force, thymine: 42 kJ mol(-1)). Very similar in energy is a water elimination that leads to the Ura-5-methyl radical. Purine (*)OH adducts at C4 and C5 (plus C2 in guanine) eliminate water in exothermic reactions, while water elimination from the C8 (*)OH adducts is endothermic. The latter open the ring en route to the FAPY products, an H transfer from the C8(*)OH to N9 being the most likely process.  相似文献   

5.
The reactivity of N'-formylkynurenine (FK) derivatives towards eaq has been investigated. The reduced transient species have been characterized (lambda max approximately 340, 440 nm, epsilon lambda max approximately 3000-1000 M-1 cm-1, pKa approximately 7.8). Owing to the strong FK electron affinity, electron-transfer reactions occur from purine (except guanine) and pyrimidine electron adducts to FK (k approximately 2-7 x 10(9) M-1 s-1). As some FK derivatives bind to DNA (or polynucleotides) the protective effect of complexation on FK-DNA (or polynucleotides) adduct formation has been investigated.  相似文献   

6.
B McConnell 《Biochemistry》1978,17(15):3168-3176
The pH dependence of buffer catalysis of exchange of the C-4 amino protons of cyclic cytosine 2',3'-monophosphate (cCMP) and the N-1 proton of cyclic guanosine 2',3'-monophosphate (cGMP) conforms to an exchange mechanism, in which protonation of the nucleobases at C(N-3) AND G(N-7) establishes the important intermediates at neutral to acidic pH. Rate constants for transfer of the G(N-1) proton to H2O, OH-, phosphate, acetate, chloracetate, lactate, and cytosine (N-3) were obtained from 1H nuclear magnetic resonance line width measurements at 360 MHz and were used to estimate the pK or acidity of the exchange site in both the protonated and unprotonated nucleobase. These estimates reveal an increase in acidity of the G(N-1) site corresponding to 2 to 3 pK units as the G(N-7) site is protonated: At neutral pH the G(N-1) site of the protonated purine would be ionized (pK = 6.3). Determinations of phosphate, imidazole, and methylimidazole rate constants for transfer of the amino protons of cCMP provide a more approximate estimate of pK = 7 to 9 for the amino of the protonated pyrimidine. A comparison of the intrinsic amino acidity in the neutral and protonated cytosine is vitiated by the observation that OH- catalyzed exchange in the neutral base is not diffusion limited. This leads to the conclusion that protonation of the nucleobase effects a qualitative increase in the ability of the amino protons to form hydrogen bonds: from very poor in the neutral base to "normal" in the conjugate acid.  相似文献   

7.
Thiyl radicals are shown to be readily trapped with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (TMPO) giving characteristic spin adducts with hyperfine coupling constants aN 1.52-1.58, aH 1.52-1.80 mT, and g values in the range 2.0065-2.0067 for the DMPO adducts and aN 1.50-1.56, aH 1.70-1.92 mT, g 20049-2.0051 for the TMPO adducts. Kinetic data obtained from pulse radiolysis studies show that, in general, thiyl radicals react rapidly with these spin traps with rate constants of the order of 10(7)-10(8) dm3 mol-1 s-1. The tetramethylated spin trap TMPO though giving slightly less intense electron spin resonance (ESR) spectra, produces longer lived adducts, and is suggested to be of greater utility due to the more characteristic nature of the coupling constants of the observed adducts; reaction of certain thiyl radicals with DMPO produces adducts which are superficially similar to the hydroxyl radical adduct to the same trap.  相似文献   

8.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

9.
The study of the reaction of the hydrated electron with adenosine by optical and dc-conductivity pulse radiolysis on nano- and microsecond timescales has been carried out in an attempt to answer the question whether the electron adduct radical becomes protonated or not. The following conclusions have been reached: (1) the reaction of the hydrated electron with adenosine is followed by a water-mediated protonation, which must be complete with 5 ns; (2) no spectral indication of a further protonation of the protonated electron adduct of adenosine of 2'-deoxyadenosine has been found between 40 and 5000 ns; (3) the equilibrium reaction between radiation produced H3O+ and adenosine with a pKa of 3.5 plays an important role in the kinetics of the conductivity transients.  相似文献   

10.
1-Methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), a metabolic product of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been shown to generate superoxide radicals during its autoxidation process. The generation of superoxide radicals was detected as a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO).O2- spin adduct by spin trapping in combination with EPR techniques. The rate of formation of spin adduct was dependent not only on the concentrations of MPDP+ and oxygen but also on the pH of the system. Superoxide dismutase inhibited the spin adduct formation in a dose-dependent manner. The ability of DMPO to trap superoxide radicals, generated during the autoxidation of MPDP+, and of superoxide dismutase to effectively compete with this reaction for the available O2-, has been used as a convenient competition reaction to quantitatively determine various kinetic parameters. Thus, using this technique the rate constant for scavenging of superoxide radical by superoxide dismutase was found to be 7.56 x 10(9) M-1 s-1. The maximum rate of superoxide generation at a fixed spin trap concentration using different amounts of MPDP+ was found to be 4.48 x 10(-10) M s-1. The rate constant (K1) for MPDP+ making superoxide radical was found to be 3.97 x 10(-6) s-1. The secondary order rate constant (KDMPO) for DMPO-trapping superoxide radicals was found to be 10.2 M-1 s-1. The lifetime of superoxide radical at pH 10.0 was calculated to be 1.25 s. These values are in close agreement to the published values obtained using different experimental techniques. These results indicate that superoxide radicals are produced during spontaneous oxidation of MPDP+ and that EPR spin trapping can be used to determine the rate constants and lifetime of free radicals generated in aqueous solutions. It appears likely that the nigrostriatal toxicity of MPTP/MPDP+ leading to Parkinson's disease may largely be due to the reactivity of these radicals.  相似文献   

11.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

12.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

13.
J Everse  N Kujundzic 《Biochemistry》1979,18(12):2668-2673
A detailed investigation of the reduction of cytochrome c by glutathione has shown that the reaction proceeds through several steps. A rapid combination of the reducing agent with the cytochrome leads to the formation of a glutathione-cytochrome intermediate in which the glutathione most likely interacts with the edge of the heme moiety. The electron transfer takes place in a subsequent slower step. Since cytochrome c(III) exists in two conformational forms at neutral pH [Kujundzic, N., & Everse, J. (1978) Biochem. Biophys. Res. Commun. 82, 1211], the reduction of cytochrome c by glutathione may be represented by cyt c(III) + GS- reversible K1 cyt c(III) ... GS- reversible k1 products cyt c*(III) + GS- reversible K2 cyt c*(III) ... GS- reversible k2 products At 25 degrees C, pH 7.5, and an ionic strength of 1.0 (NaCl), k1 = 1.2 X 10(-3) S-1, k2 = 2.0 X 10(-3) S-1, k1 = 2.9 X 10(3) M-1, and K2 = 5.3 X 10(3) M-1. The reaction is catalyzed by trisulfides, and second-order rate constants of 4.55 X 10(3) and 7.14 X 10(3) M-1 S-1 were obtained for methyl trisulfide and cysteine trisulfide, respectively.  相似文献   

14.
Electron spin resonance was employed to study one-electron reduced cytosine stabilized in glasses at low temperatures. In a LiCl/H2O glass, deoxycytidine gives an extra approximately 1 mT splitting that is not observed in oligomers. To better understand the source of the extra splitting, 1-methylcytosine (1mC) and N,N-dimethyldeoxycytidine (dmC) were examined in an HCl/H2O glass. The spectrum of 1mC is a quartet and the spectrum of dmC is a triplet. A probable explanation for this is that in both cases N4 is fully protonated prior to electron addition. In the LiCl/H2O glass, monomeric cytosine, after one-electron reduction, appears to protonate at N4. However, oligomeric cytosine, after one-electron reduction, does not protonate at N4 and therefore must protonate at N3. This could be due to the exclusion of Li+ coordination at N3 and/or the constraining of N4 to a planar configuration via stacking interactions. These findings provide additional insight into why cytosine is the major site of electron capture in DNA. Proton transfer across the N1-H...N3 hydrogen bond is expected to stabilize electron addition to cytosine preferentially.  相似文献   

15.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

16.
The kinetics of oxidation of the Fe proteins of nitrogenases from Klebsiella pneumoniae (Kp2) and Azotobacter chroococcum (Ac2) by O2 and H2O2 have been studied by stopped-flow spectrophotometry at 23 degrees C, pH 7.4. With excess O2, one-electron oxidation of Kp2 and Ac2 and their 2 MgATP or 2 MgADP bound forms occurs with rate constants (k) in the range 5.3 x 10(3) M-1.S-1 to 1.6 x 10(5) M-1.S-1. A linear correlation between log k and the mid-point potentials (Em) of these protein species indicates that the higher rates of electron transfer from the Ac2 species are due to the differences in Em of the 4Fe-4S cluster. The reaction of Ac2(MgADP)2 with O2 is sufficiently rapid for it to contribute significantly to the high respiration rate of Azotobacter under N2-fixing conditions and may represent a new respiratory pathway. Excess O2 rapidly inactivates Ac2(MgADP)2 and Kp2(MgADP)2; however, when these protein species are in greater than 4-fold molar excess over the concentration of O2, 4 equivalents of protein are oxidized with no loss of activity. The kinetics of this reaction suggest that H2O2 is an intermediate in the reduction of O2 to 2 H2O by nitrogenase Fe proteins and imply a role for catalase or peroxidase in the mechanism of protection of nitrogenase from O2-induced inactivation.  相似文献   

17.
A possible mechanism by which disodium cromoglycate (DSCG) prevents a decrease in regional cerebral blood flow but not hypotension in primates following whole body gamma-irradiation was studied. Several studies have implicated superoxide radicals (O2-.) in intestinal and cerebral vascular disorders following ischemia and ionizing radiation, respectively. O2-. is formed during radiolysis in the reaction between hydrated electrons (e-aq) and dissolved oxygen. For this reason, the efficiency of DSCG to scavenge e-q and possibly prevent the formation of O2-. was studied. Hydrated electrons were produced by photolysis of potassium ferrocyanide solutions. The rate constant, k = 2.92 x 10(10) M-1s-1 for the reaction between e-aq and DSCG was determined in competition experiments using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This spin trap reacts rapidly with e-aq followed by protonation to yield the ESR observable DMPO-H spin adduct. The results show that DSCG is an efficient e-aq scavenger and may effectively compete with oxygen for e-aq preventing the radiolytic formation of O2-..  相似文献   

18.
Previously it has not been possible to determine the rate of deamination of cytosine in DNA at 37 degrees C because this reaction occurs so slowly. We describe here a sensitive genetic assay to measure the rate of cytosine deamination in DNA at a single cytosine residue. The assay is based on reversion of a mutant in the lacZ alpha gene coding sequence of bacteriophage M13mp2 and employs ung- bacterial strains lacking the enzyme uracil glycosylase. The assay is sufficiently sensitive to allow us to detect, at a given site, a single deamination event occurring with a background frequency as low as 1 in 200,000. With this assay, we determined cytosine deamination rate constants in single-stranded DNA at temperatures ranging from 30 to 90 degrees C and then calculated that the activation energy for cytosine deamination in single-stranded DNA is 28 +/- 1 kcal/mol. At 80 degrees C, deamination rate constants at six sites varied by less than a factor of 3. At 37 degrees C, the cytosine deamination rate constants for single- and double-stranded DNA at pH 7.4 are 1 x 10(-10) and about 7 x 10(-13) per second, respectively. (In other words, the measured half-life for cytosine in single-stranded DNA at 37 degrees C is ca. 200 years, while in double-stranded DNA it is on the order of 30,000 years.) Thus, cytosine is deaminated approximately 140-fold more slowly when present in the double helix. These and other data indicate that the rate of deamination is strongly dependent upon DNA structure and the degree of protonation of the cytosine. The data suggest that agents which perturb DNA structure or facilitate direct protonation of cytosine may induce deamination at biologically significant rates. The assay provides a means to directly test the hypothesis.  相似文献   

19.
The reactions of ferrocytochrome c with Br2-, (SCN)2-, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on gamma-irradiation as well as the rate of change of absorbance upon pulse irradiation. Ferrocytochrome c is oxidized to ferricytochrome c by Br2-, (SCN)2- or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 . 10(8) M-1 . s-1, 7.9 . 10(8) M-1, 1.3 . 10(9) M-1 . s-1 for the oxidation by Br2-, (SCN)2- and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by br2- and (SCN)2-. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical. Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k greater than 1 . 10(10) M-1 . s-1), but with a very small efficiency (5%).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号