首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Caulobacter gene involved in polar morphogenesis.   总被引:7,自引:4,他引:3       下载免费PDF全文
At specific times in the cell cycle, the bacterium Caulobacter crescentus assembles two major polar organelles, the flagellum and the stalk. Previous studies have shown that flbT mutants overproduce flagellins and are unable to form chemotaxis swarm rings. In this paper, we report alterations in both the stalk and the flagellar structure that result from a mutation in the flagellar gene flbT. Mutant strains produce some stalks that have a flagellum, produce some stalks that have an extra lobe protruding from their sides, have filaments lacking the 29-kilodalton flagellin, and produce several unusual cell types, including filamentous cells as well as predivisional cells with two stalks and predivisional cells with no stalk at all. We propose that flagellated stalks arise as a consequence of a failure to eject the flagellum at the correct time in the cell cycle and that the extra stalk lobe is due to a second site for the initiation of stalk biogenesis. Thus, a step in the pathway that establishes the characteristic asymmetry of the C. crescentus cell appears to be disrupted in flbT mutants. We have also identified a new structural feature at the flagellated pole and the tip of the stalk: the 10-nm polar particle. The polar particles appear as a cluster of approximately 1 to 10 stain-excluding rings, visible in electron micrographs of negatively stained wild-type cells. This structure is absent at the flagellar pole but not in the stalks of flbT mutant predivisional cells.  相似文献   

2.
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.  相似文献   

3.
Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an in vitro model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a “self-generated” gradient mechanisms that accelerates the extension of the sprout.  相似文献   

4.
The envelope and stalk of Colacium mucronatum Bourr. & Chad, were examined in living cells with light microscopy and in fixed preparations with scanning electron microscopy using critically point dried (CPD) and freeze dried (FD) preparations. The envelope of palmelloid cells is formed over the entire cell surface by many individual strands attached at right angles to areas of articulation of the pellicular strips. Strands were observed to anastomose on the posterior tip of otherwise naked cells. Stalks of living cells in India ink preparations had an optically dark inner core with a lighter outer sheath. In FD stalks a definite inner core was not evident, whereas CPD stalks had an outer surface composed of thick strands which may be the collapsed and aggregated strands of the FD stalks. In both there was also an amorphous matrix. The stalk forms from the aggregation of many strands from the anterior cell tip back to a point encompassing the cell surface anterior to a cross section of the tip 9 μm diam. The outer surface of the stalk comes from the pellicular surface joining that area and the core from the cell tip in the area of the canal opening. Any possible participation of the inner canal surface in stalk formation could not be determined because of the great density of the mucilage at the cell-tip/stalk junction.  相似文献   

5.
Protein-rich fractions inhibitory for isolated ureteric bud (UB) growth were separated from a conditioned medium secreted by cells derived from the metanephric mesenchyme (MM). Elution profiles and immunoblotting indicated the presence of members of the transforming growth factor-beta (TGF-beta) superfamily. Treatment of cultured whole embryonic kidney with BMP2, BMP4, activin, or TGF-beta1 leads to statistically significant differences in the overall size of the kidney, the number of UB branches, the length and angle of the branches, as well as in the thickness of the UB stalks. Thus, the pattern of the ureteric tree is altered. LIF, however, appeared to have only minimal effect on growth and development of the whole embryonic kidney in organ culture. The factors all directly inhibited, in a concentration-dependent fashion, the growth and branching of the isolated UB, albeit to different extents. Antagonists of some of these factors reduced their inhibitory effect. Detailed examination of TGF-beta1-treated UBs revealed only a slight increase in the amount of apoptosis in tips by TUNEL staining, but diminished proliferation throughout by Ki67 staining. These data suggest an important direct modulatory role for BMP2, BMP4, LIF, TGF-beta1, and activin (as well as their antagonists) on growth and branching of the UB, possibly in shaping the growing UB by playing a role in determining the number of branches, as well as where and how the branches occur. In support of this notion, UBs cultured in the presence of fibroblast growth factor 7 (FGF7), which induces the formation of globular structures with little distinction between the stalk and ampullae [Mech. Dev. 109 (2001) 123], and TGF-beta superfamily members lead to the formation of UBs with clear stalks and ampullae. This indicates that positive (i.e., growth and branch promoting) and negative (i.e., growth and branch inhibiting) modulators of UB morphogenesis can cooperate in the formation of slender arborized UB structures similar to those observed in the intact developing kidney or in whole embryonic kidney organ culture. Finally, purification data also indicate the presence of an as yet unidentified soluble non-heparin-binding activity modulating UB growth and branching. The data suggest how contributions of positive and negative growth factors can together (perhaps as local bipolar morphogenetic gradients existing within the mesenchyme) modulate the vectoral arborization pattern of the UB and shape branches as they develop, thereby regulating both nephron number and tubule/duct caliber. We suggest that TGF-beta-like molecules and other non-heparin-binding inhibitory factors can, in the appropriate matrix context, facilitate "braking" of the branching program as the UB shifts from a rapid branching stage (governed by a feed-forward mechanism) to a stage where branching slows down (negative feedback) and eventually stops.  相似文献   

6.
Males and females of the commensal protandric bivalve Pseudopythina subsinuata have paired seminal receptacles, the interior of which contains many slender elongate cells. The testis produces small euspermatozoa and comparatively few and much larger paraspermatozoa. The ?16-μm-long and 3-5-μm-thick paraspermatozoa have a terminally placed irregularly cork-screw-shaped acrosome and a bundle of ca. 16 flagella emerging from behind the nucleus. The role of the paraspermatozoa is obscure. Euspermatozoa are transferred to the seminal receptacles of the females and attach with the tip of the acrosome to the elongate cells. Most females contain one to three “sperm trees”, structures consisting of a short stem and numerous branches. They are firmly implanted in the abfrontal part of the gill filament and protrude into the posterior part of the suprabranchial (brooding) chamber. Implantation of the trees causes the gill tissue to swell around the stem and some of the nearest filaments to coalesce. All branches are densely coated with euspermatozoa that are attached by means of their acrosomes. It is conjectured that the syncytial and multinucleate trees arise from seminal receptacle cells that detach from the receptacle and thereupon fuse. A similar process is known in the allied P. tsurumaru, but the resulting structure (“sperm-carrying body”) is not attached to the gills.  相似文献   

7.
One of the most striking features of the diatom Didymosphenia geminata, which has increased markedly in abundance in a number of countries in recent years, is the very large branched stalks. In order to help understanding their role, an ultrastructural study was carried out on two populations, one from a stream in northern England and the other from a river on Vancouver Island, Canada. In both cases, the main part of the stalk had a central reticulate core surrounded by an outer region with dense fibres. A longitudinal structure in the uppermost part of the stalk just under the collar surrounding the base of the cell may perhaps correspond to a tube. The structure of the septa formed where branches divide is also described. Phosphomonoesterase activity known to be present in the stalks was shown to occur in the inner peripheral layers of the stalks and especially in the collar area. The results show that stalks have a complex structure suggesting their importance for their phosphatase activity to overcome low inorganic phosphate concentrations. Their large surface may function in herbivory avoidance, a better exposure of cells to turbulent conditions to increase nutrient uptake, adsorption of limiting elements and gas exchange.  相似文献   

8.
Drip‐tips are a common feature of the leaves of rain forest trees, but their functional significance remains contested. The most widely accepted hypothesis is that drip‐tips assist drainage of the lamina thereby aiding drying of the leaf surface and reducing the rate of colonization and abundance of epiphyllic organisms. The drying action of drip‐tips may also enhance transpiration and reduce the need for investment in support structures. Furthermore, drip‐tips may help prevent splash erosion around the base of the tree. Data from 130 forest Amazonian plots are used to investigate the abundance and distribution of drip‐tips and, through regression methods that incorporate spatial autocorrelation, seek to identify associations between the frequency of drip‐tips and a range of climatic variables. The average frequency of species and trees with drip‐tips across all plots was 32 and 33 percent, respectively. Trees and species with drip‐tips were significantly more prevalent in the Central‐East Amazon than the other regions. Drip‐tips were also associated with tree species that have smaller maximum heights and with trees with smaller trunk diameters. The proportion of species and individuals with drip‐tips was more strongly correlated with precipitation of the wettest trimester than with total annual precipitation or length of the dry season. Our results extend and provide support for both existing hypotheses for the functional benefit of possessing a drip‐tip. Moreover, the currently unrecognized macrogeographic association between the frequency of drip‐tips in trees of the tropical forest understory and areas of heavy precipitation suggests a new function for this trait.  相似文献   

9.
Growth parameters of vegetative hyphae and isolated tip fragments of the mycelial fungus N. crassa were studied after complete substitution of an easily metabolized carbon source (glucose) for a non-metabolized one (sorbitol). The images of growing tips were recorded at 20–30-min intervals. Using original image processing software, geometrical parameters of the hyphal trees (length and number of branches, area of convex polygons circumscribed about the hyphal trees, etc.) were determined and growth characteristics, such as rate of tip elongation (V) and the ratio of the total hyphal length to the number of growing tips (termed “hyphal growth unit”, HGU), were calculated. It is shown that after 4–5-h growth in sorbitol-enriched media growth characteristics of intact hyphae did not differ significantly from the corresponding parameters of hyphae growing in glucose-enriched media. In isolated tip fragments (about 800-μ m long), the values of V were lower than those in intact hyphae but did not depend on the carbon source in the nutrient media. However, in such fragments growing in sorbitol-enriched media the number of branches decreased, while the HGU value and the number of large intracellular vacuoles increased. Staining of cells with a standard chitin probe, Calcofluor White (10 μg/ml), did not reveal any considerable differences in hyphal cell walls and septa in tip fragments grown in the presence of different carbon sources. Possible mechanisms of the dependence of the tip growth parameters on the glucose deficiency are discussed.  相似文献   

10.
The so-called Fe/Mn-oxidizing bacteria have long been recognized for their potential to form extracellular iron hydroxide or manganese oxide structures in aquatic environments. Bacterial species belonging to the genus Gallionella, one type of such bacteria, oxidize iron and produce uniquely twisted extracellular stalks consisting of iron oxide-encrusted inorganic/organic fibers. This paper describes the ultrastructure of Gallionella cells and stalks and the visualized structural and spatial localization of constitutive elements within the stalks. Electron microscopy with energy-dispersive X-ray microanalysis showed the export site of the stalk fibers from the cell and the uniform distribution of iron, silicon, and phosphorous in the stalks. Electron energy-loss spectroscopy revealed that the stalk fibers had a central carbon core of bacterial exopolymers and that aquatic iron interacted with oxygen at the surface of the carbon core, resulting in deposition of iron oxides at the surface. This new knowledge of the structural and spatial associations of iron with oxygen and carbon provides deeper insights into the unique inorganic/organic hybrid structure of the stalks.  相似文献   

11.
We have produced two monoclonal antibodies specific to the stalk cells of Dictyostelium discoideum fruiting bodies. Both monoclonal antibodies react with high molecular weight proteins previously found to be stalk-specific by two-dimensional gel analysis. One antibody (JAb 1) is specific for a single protein of apparent molecular weight 310 000 which first appears when overt stalk differentiation begins at 20 h. The other monoclonal antibody (JAb 2) is also stalk-specific, though earlier in development it binds to proteins extracted from both prestalk and prespore cells of the migrating slug. It reacts with two proteins in stalks, one of apparent molecular weight 430 000 which is first detected during tip formation at 12 h and a lower molecular weight protein (310 000) detected from 20 h. Although several markers are available for the investigation of prespore/spore differentiation there is a distinct lack of suitable prestalk/stalk markers. The monoclonal antibodies described here are highly specific stalk markers and should prove useful in the study of cell proportioning and terminal differentiation.  相似文献   

12.
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.  相似文献   

13.

Angiogenesis is the process by which new blood vessels form from existing vessels. During angiogenesis, tip cells migrate via diffusion and chemotaxis, new tip cells are introduced through branching, loops form via tip-to-tip and tip-to-sprout anastomosis, and a vessel network forms as endothelial cells, known as stalk cells, follow the paths of tip cells (a process known as the snail-trail). Using a mean-field approximation, we systematically derive one-dimensional non-linear continuum models from a lattice-based cellular automaton model of angiogenesis in the corneal assay, explicitly accounting for cell volume. We compare our continuum models and a well-known phenomenological snail-trail model that is linear in the diffusive, chemotactic and branching terms, with averaged cellular automaton simulation results to distinguish macroscale volume exclusion effects and determine whether linear models can capture them. We conclude that, in general, both linear and non-linear models can be used at low cell densities when single or multi-species exclusion effects are negligible at the macroscale. When cell densities increase, our non-linear model should be used to capture non-linear tip cell behavior that occurs when single-species exclusion effects are pronounced, and alternative models should be derived for non-negligible multi-species exclusion effects.

  相似文献   

14.
The ecmA (pDd63) and ecmB (pDd56) genes encode extracellular matrix proteins of the slime sheath and stalk tube of Dictyostelium discoideum. Using fusion genes containing the promoter of one or other gene coupled to an immunologically detectable reporter, we previously identified two classes of prestalk cells in the tip of the migrating slug; a central core of pstB cells, which express the ecmB gene, surrounded by pstA cells, which express the ecmA gene. PstB cells lie at the position where stalk tube formation is initiated at culmination and we show that they act as its founders. As culmination proceeds, pstA cells transform into pstB cells by activating the ecmB gene as they enter the stalk tube. The prespore region of the slug contains a population of cells, termed anterior-like cells (ALC), which have the characteristics of prestalk cells. We show that the ecmA and ecmB genes are expressed at a low level in ALC during slug migration and that their expression in these cells is greatly elevated during culmination. Previous observations have shown that ALC sort to surround the prespore cells during culmination (Sternfeld and David, 1982 Devl Biol. 93, 111-118) and we find just such a distribution for pstB cells. We believe that the ecmB protein plays a structural role in the stalk tube and its presence, as a cradle around the spore head, suggests that it may play a further function, perhaps in ensuring integrity of the spore mass during elevation. If this interpretation is correct, then a primary role of anterior-like cells may be to form these structures at culmination. We previously identified a third class of prestalk cells, pstO cells, which lie behind pstA cells in the slug anterior and which appeared to express neither the ecmA nor the ecmB gene. Using B-galactosidase fusion constructs, which give more sensitive detection of gene expression, we now find that these cells express the ecmA gene but at a much lower level than pstA cells. We also show that expression of the ecmA gene becomes uniformly high throughout the prestalk zone when slugs are allowed to migrate in the light. Overhead light favours culmination and it may be that increased expression of the ecmA gene in the pst 'O' region is a preparatory step in the process.  相似文献   

15.
Phylogenetic imputation has recently emerged as a potentially powerful tool for predicting missing data in functional traits datasets. As such, understanding the limitations of phylogenetic modelling in predicting trait values is critical if we are to use them in subsequent analyses. Previous studies have focused on the relationship between phylogenetic signal and clade‐level prediction accuracy, yet variability in prediction accuracy among individual tips of phylogenies remains largely unexplored. Here, we used simulations of trait evolution along the branches of phylogenetic trees to show how the accuracy of phylogenetic imputations is influenced by the combined effects of 1) the amount of phylogenetic signal in the traits and 2) the branch length of the tips to be imputed. Specifically, we conducted cross‐validation trials to estimate the variability in prediction accuracy among individual tips on the phylogenies (hereafter ‘tip‐level accuracy’). We found that under a Brownian motion model of evolution (BM, Pagel't λ = 1), tip‐level accuracy rapidly decreased with increasing tip branch‐lengths, and only tips of approximately 10% or less of the total height of the trees showed consistently accurate predictions (i.e. cross‐validation R‐squared >0.75). When phylogenetic signal was weak, the effect of tip branch‐length was reduced, becoming negligible for traits simulated with λ < 0.7, where accuracy was in any case low. Our study shows that variability in prediction accuracy among individual tips of the phylogeny should be considered when evaluating the reliability of phylogenetically imputed trait values. To address this challenge, we describe a Monte Carlo‐based method that allows one to estimate the expected tip‐level accuracy of phylogenetic predictions for continuous traits. Our approach identifies gaps in functional trait datasets for which phylogenetic imputation performs poorly, and will help ecologists to design more efficient trait collection campaigns by focusing resources on lineages whose trait values are more uncertain.  相似文献   

16.
17.
In this study, five different in vitro assays, which together recapitulate much of kidney development, were used to examine the role of the Rho-associated protein serine/threonine kinase (ROCK) in events central to ureteric bud (UB) and metanephric mesenchyme (MM) morphogenensis, in isolation and together. ROCK activity was found to be critical for (1) cell proliferation, growth, and development of the whole embryonic kidney in organ culture, (2) tip and stalk formation in cultures of isolated UBs, and (3) migration of MM cells (in a novel MM migration assay) during their condensation at UB tips (in a UB/MM recombination assay). Together, the data indicate selective involvement of Rho/ROCK in distinct morphogenetic processes necessary for kidney development and that the coordination of these events by Rho/ROCK provides a potential mechanism to regulate overall branching patterns, nephron formation, and thus, kidney architecture.  相似文献   

18.
During normal in vivo development, the optic stalk gives rise only to macroglial cells. When we cultured optic stalks isolated from their immediate in situ environment, we found that optic stalks obtained from embryos at Theiler stages 16 to 19 gave rise to both neurons and glial precursor cells, whereas optic stalks obtained from embryos at stages 20 to 23 gave rise to only glial precursor cells. Between stages 19 and 20 (a period of 12 hr of development) the optic stalk changes from a pseudostratified to a simple epithelium, and concomitant with these changes is the growth of the neural retinal axons along the optic stalk. An attractive hypothesis to explain these observations is that the environmental cues that restrict the differentiation capability of the optic stalk ventricular cell population in vivo emanate from the retinal axons. Whether this is due to a restriction in the differentiation capability of a pleuripotential ventricular cell or to a selective cell death of a subpopulation of ventricular cells already committed to the neuronal lineage of differentiation is not yet resolved.  相似文献   

19.
Olfactory responses of Dasineura tetensi (Rubs) (Diptera; Cecidomyiidae) to leaf volatiles of blackcurrant (Ribes nigrum) were tested in a 4-way olfactometer. Newly emerged virgin females showed no response to the leaf volatiles emitted from a blackcurrant shoot. Newly emerged males (which are known to respond to a pheromone released by the female) also showed no response to the leaf volatiles. Two hours after mating females responded positively, indicating that leaf volatiles may play a role in host plant finding. Scanning (SEM) and transmission (TEM) electron microscopy of the antennae of D. tetensi showed that males and females share five sensillum types; sensilla chaetica (mechanoreceptors), sensilla trichodea, sensilla basiconica, uniporous peg sensilla and circumfila (chemoreceptors). The sensilla chaetica and sensilla trichodea resemble those found on other insects. Sensilla basiconica were found on all antennal subsegments except the tip. These are multiporous receptors with five unbranched dendrites filling the lumen. Small peg sensilla located on the tips of both male and female antennae may function as contact-chemoreceptors. The circumfila, which are a unique type of sensilla found only on cecidomyiid antennae, form loops around each of the antennal subsegments, being attached to the surface by a series of stalks. TEM revealed that each stalk consisted of one sensillum containing a single highly branched dendrite. The distal regions of the walls of each sensillum are fused together to form the circumfila. Circumfila have multiporous walls and a lumen filled with multiple branches of dendrites. Their structure suggests that they are important olfactory receptors in both the male and female.  相似文献   

20.
Caulobacter crescentus cells treated with amdinocillin, an antibiotic which specifically inhibits the cell elongation transpeptidase penicillin binding protein 2 in Escherichia coli, exhibit defects in stalk elongation and morphology, indicating that stalk synthesis may be a specialized form of cell elongation. In order to investigate this possibility further, we examined the roles of two other proteins important for cell elongation, RodA and MreB. We show that, in C. crescentus, the rodA gene is essential and that RodA depletion leads to a loss of control over stalk and cell body diameter and a stalk elongation defect. In addition, we demonstrate that MreB depletion leads to a stalk elongation defect and conclude that stalk elongation is a more constrained form of cell elongation. Our results strongly suggest that MreB by itself does not determine the diameter of the cell body or stalk. Finally, we show that cells recovering from MreB depletion exhibit a strong budding and branching cell body phenotype and possess ectopic poles, as evidenced by the presence of multiple, misplaced, and sometimes highly branched stalks at the ends of these buds and branches. This phenotype is also seen to a lesser extent in cells recovering from RodA depletion and amdinocillin treatment. We conclude that MreB, RodA, and the target(s) of amdinocillin all contribute to the maintenance of cellular polarity in C. crescentus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号