首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-evoked intraretinal field potentials (electroretinogram, ERG) have been measured simultaneously with extracellular potassium fluxes in the amphibian retina. The application of highly selective pharmacologic agents permitted us to functionally isolate various classes of retinal neurons. It was found that: (a) application of APB (2-amino-4-phosphonobutyrate), which has previously been shown to selectively abolish the light responsiveness of ON bipolar cells, causes a concomitant loss of the ERG b-wave and ON potassium flux. (b) Conversely, PDA (cis 2,3-piperidine-dicarboxylic acid) or KYN (kynurenic acid), which have been reported to suppress the light responses of OFF bipolar, horizontal, and third-order retinal neurons, causes a loss of the ERG d-wave as well as OFF potassium fluxes. The b-wave and ON potassium fluxes, however, remain undiminished. (c) NMA (N-methyl-DL-aspartate) or GLY (glycine), which have been reported to suppress the responses of third-order neurons, do not diminish the b- or d-waves, nor the potassium fluxes at ON or OFF. This leads to the conclusion that the b-wave of the ERG is a result of the light-evoked depolarization of the ON bipolar neurons. This experimental approach has resulted in two further conclusions: (a) that the d-wave is an expression of OFF bipolar and/or horizontal cell depolarization at the termination of illumination and (b) that light-induced increases in extracellular potassium concentration in both the inner (proximal) and outer (distal) retina are the result of ON bipolar cell depolarization.  相似文献   

2.
Tian N  Copenhagen DR 《Neuron》2003,39(1):85-96
ON and OFF pathways separately relay increment and decrement luminance signals from retinal bipolar cells to cortex. ON-OFF retinal ganglion cells (RGCs) are activated via synaptic inputs onto bistratified dendrites localized in the ON and OFF regions of the inner plexiform layer. Postnatal maturational processes convert bistratifying ON-OFF RGCs to monostratifying ON and OFF RGCs. Although visual deprivation influences refinement of higher visual centers, no previous studies suggest that light regulates either the development of the visual-evoked signaling in retinal ON and OFF pathways, nor pruning of bistratified RGC dendrites. We find that dark rearing blocks both the maturational loss of ON-OFF responsive RGCs and the pruning of dendrites. Thus, in retina, there is a previously unrecognized, pathway-specific maturation that is profoundly affected by visual deprivation.  相似文献   

3.
B Lei 《PloS one》2012,7(8):e43856

Purpose

The rodent retina does not exhibit a positive OFF-response in the electroretinogram (ERG), which makes it difficult to evaluate its OFF-pathway functions in vivo. We studied the rod-driven OFF pathway responses by using a dark-adapted 10-Hz flicker ERG procedure in mouse.

Materials and Methods

Conventional ERGs and 10-Hz dark-adapted flicker ERGs were obtained in wild-type mice (C57BL/6), in mice with pure rod (cpfl1) or pure cone (rho−/−) function, and in nob1 mice which have a selective ON-pathway defect. To isolate the response from ON or OFF pathway, glutamate analogs 2-amino-4-phosphobutyric acid (APB, an ON pathway blocker) and cis-2, 3-piperidine-dicarboxylic acid (PDA, an OFF pathway blocker), were injected intravitreally.

Results

The amplitude-intensity profile of the dark-adapted 10-Hz flicker ERG in the wild-type mice exhibits two peaks at middle and high light intensities. The two peaks represent rod- and cone-driven responses respectively. In APB-treated C57BL/6 mice and in nob1 mice, the dark-adapted ERG b-waves were absent. However, both rod- and cone-driven OFF pathway responses were evident with flicker ERG recording. At middle light intensities that activate only rod system, the flicker ERG responses in saline-injected nob1 mice were similar to those in APB-injected cpfl1 mice and wild-type mice. These responses are sensitive to PDA. The amplitudes of these rod-driven OFF pathway responses were approximately 20% of the total rod-driven flicker ERG responses.

Conclusion

We demonstrate that the rod-OFF bipolar cell pathway is functional in the outer retina. The dark-adapted flicker ERG is practical for the evaluation of rod- and cone-driven responses, and the residual OFF pathway signals in subjects with ON pathway defects.  相似文献   

4.
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.  相似文献   

5.
In the mammalian retina, information concerning various aspects of an image is transferred in parallel, and cone bipolar cells are thought to play a major role in this parallel processing. We have examined the synaptic connections of calbindin-immunoreactive (IR) ON cone bipolar cells in the inner plexiform layer (IPL) of rabbit retina and have compared these synaptic connections with those that we have previously described for neurokinin 1 (NK1) receptor-IR cone bipolar cells. A total of 325 synapses made by calbindin-IR bipolar axon terminals have been identified in sublamina b of the IPL. The axons of calbindin-IR bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and are coupled to putative AII amacrine cells via gap junctions. The major output from calbindin-IR bipolar cells is to amacrine cell processes. These data resemble our findings for NK1 receptor-IR bipolar cells. However, the incidences of output synapses to ganglion cell dendrites of calbindin-IR bipolar cells are higher compared with the NK1-receptor-IR bipolar cells. On the basis of stratification level and synaptic connections, calbindin-IR ON cone bipolar cells might thus play an important role in the processing of various visual aspects, such as contrast, orientation, and approach sensing, and in transferring rod signals to the ON cone pathway.  相似文献   

6.
7.
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A?/?; Sema5B?/? mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.  相似文献   

8.
Rhodopsin photoproducts and rod sensitivity in the skate retina   总被引:13,自引:9,他引:4       下载免费PDF全文
The late photoproducts that result from the isomerization of rhodopsin have been identified in the isolated all-rod retina of the skate by means of rapid spectrophotometry. The sequence in which these intermediates form and decay could be described by a scheme that incorporates two pathways for the degradation of metarhodopsin II (MII) to retinol: one via metarhodopsin III (MIII) and the other (which bypasses MIII) through retinal. Computer simulation of the model yielded rate constants and spectral absorbance coefficients for the late photoproducts which fit experimental data obtained at temperatures ranging from 7 degrees C to 27 degrees C. Comparing the kinetics of the thermal reactions with the changes in rod threshold that occur during dark adaptation indicated that the decay of MII and the fall in receptor thresholds exhibit similarities with regard to their temperature dependence. However, the addition of 2 mM hydroxylamine to a perfusate bathing the retina greatly accelerated the photochemical reactions, but had no significant effect on the rate of recovery of rod sensitivity. It appears, therefore, that the late bleaching intermediates do not control the sensitivities of skate rods during dark adaptation.  相似文献   

9.
The effect of GABAergic blockade by picrotoxin on ganglion cells (GC) activity was investigated in perfused dark adapted eyecups of frog (Rana ridibunda). PT had diverse effects on the light responses of GC in contrast to its uniform potentiating effect on the amplitude of the ERG b- and d-wave. In some (n=32) of PT-sensitive ON-OFF GC the ON and OFF responses were changed in a similar manner (both responses were potentiated or both were inhibited), but in the other (n=10) the both responses were changed in a different manner. PT influenced differentially the activity of OFF GC (n=17) as well. It not only potentiated or inhibited their light responses, but changed also the temporal characteristics of the responses. Some tonic cells became phasic ones and in some phasic cells a late component appeared under the influence of PT. In some cases (n=4) the GABAergic blockade changed the apparent cell's type, because of appearance of a new type of response (ON or OFF) non-existing before the blockade. Our results indicate that the GABAergic interneurons are involved in different networks in the inner plexiform layer of frog retina.  相似文献   

10.
Perfusion with the ON channel blocker 2-amino-4-phosphonobutyrate (APB) of dark adapted frog eyecups not only abolished the ganglion cells' (GC) ON responses and the ERG b-wave, but markedly potentiated the OFF responses of ON-OFF and phasic OFF-GCs and the d-wave amplitude of simultaneously recorded local ERG. Glycinergic blockade by strychnine prevented this potentiating effect in 31 out of 69 GCs, but did not change it at all in the other cells. At the same time the d-wave potentiation was preserved during the glycinergic blockade in all eyecups. The results indicate that glycinergic transmission is involved in the inhibition exerted from ON upon OFF channel in some but not all frog retinal GCs.  相似文献   

11.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

12.
Comparative electroretinographic studies of the d-wave evoked with long duration photo stimuli in dark- and light-adapted fish species (three marine and three freshwater) were performed. At the end of prolonged photo-stimulation in scotopic conditions a negative d-wave appears in electroretinograms of dogfish shark, eel and goldfish diminishing and eventually changing with intensity of photo-stimulation, while in rudd it only increases. Dark-adapted electroretinograms of two percids (perch and painted comber) exhibit a positive d-wave that approaches the b-wave amplitude under bright photopic conditions. Judging from the d-wave, only the rod pathway is active in dark-adapted dogfish shark, eel, and goldfish. Under the light adaptation, cone pathways are active in eel and goldfish, whereas the positive response to the end of light stimuli in dogfish shark could be explained by independent ON and OFF pathways from outer to inner retina via bipolar cells. In the case of two percids, dark adaptation has no influence on cone pathways. The d-wave of rudd behaves like cone-driven d-waves but in opposite sign. The data thus show that the d-wave form, amplitude and sign depend on interconnection of ON and OFF pathways as determined by the state of adaptation and/or type of photoreceptor.  相似文献   

13.
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL). Increases (ON) and decreases (OFF) in light intensity are processed by circuits that are structurally confined to separate ON and OFF synaptic sublaminae within the IPL. Using transgenic zebrafish in which the majority of amacrine cells express fluorescent protein, we determined that the earliest amacrine-derived neuritic plexus formed between two cell populations whose somata, at maturity, resided on opposite sides of this plexus. When we followed the behavior of individual amacrine cells over time, we discovered that they exhibited distinct patterns of structural dynamics at different stages of development. During cellular migration, amacrine cells exhibited an exuberant outgrowth of neurites that was undirected. Upon reaching the forming IPL, neurites extending towards the ganglion cell layer were relatively more stable. Importantly, when an arbor first formed, it preferentially ramified in either the inner or outer IPL corresponding to the future ON and OFF sublaminae, and maintained this stratification pattern. The specificity by which ON and OFF amacrine interneurons innervate their respective sublaminae in the IPL contrasts with that observed for projection neurons in the retina and elsewhere in the central nervous system.  相似文献   

14.
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance - Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina.  相似文献   

15.
The distribution of calbindin and calretinin in the retina of the sturgeon Acipenser baeri was studied with immunocytochemistry. Western blot analysis of brain extracts, together with immunocytochemical results in the retina and brain, indicated the presence of the two calcium-binding proteins in sturgeon. Calbindin immunocytochemistry revealed only a large displaced bipolar cell type with narrowly stratified axons, similar to some mixed rod and cones bipolar cells described in teleosts. The plexus formed by the axons of these cells in the inner plexiform sublayer was similar to that formed by calbindin-immunoreactive diffuse bipolar cells of some mammals. Calretinin immunocytochemistry also stained these displaced bipolar cells, most ganglion cells including displaced ganglion cells (Dogiel cells), and some amacrine cells of the inner nuclear layer. The distribution of calbindin and calretinin immunoreactivities in the retina of a primitive bony fish indicates that these proteins are highly specific to the cell type.  相似文献   

16.
Morphological and functional organization of ON and OFF pathways in the adult newt retina were examined by intracellular recording and staining techniques and immunohistochemistry. Synaptotagmin immunoreactivity discriminated three broad bands within the IPL: the distal band (sublamina I), the middle band (sublamina II) consisting of two dense punctate bands (sublaminae II(a) and II(b)), and proximal band (sublamina III). The Lucifer-yellow labeled OFF amacrine and ganglion cells send their processes mainly in sublamina I and/or II(a) where OFF bipolar cells extend their axon terminals, while ON amacrine and ganglion cells send their processes in sublamina III and/or II(b) where ON bipolar cells extend their axon terminals. Processes of ON-OFF amacrine and ganglion cells ramify broadly in the whole thickness of the IPL. Many bipolar cells responded to light spot with a transient hyperpolarization at both light onset and offset. They are probably subtypes of ON bipolar cells, because their axon terminals branch mainly in sublaminae III and/or II(b), although a few cells ramified the axon at both sublaminae II(a) and III. Two immunohistochemical markers for bipolar cells, PKC and RB-1, identified axon terminals in sublaminae III and/or II(b). From the ramification pattern of axon terminal, they are probably subtypes of ON bipolar cells. ChAT-ir amacrine cells ramified their dendrites in either sublamina I or II(b). Altogether, present studies support the general idea of segregation of ON and OFF pathways in sublaminae a and b of the IPL.  相似文献   

17.
The S-potentials recorded intracellularly from the all-rod retina of the skate probably arise from the large horizontal cells situated directly below the layer of receptors. These cells hyperpolarize in response to light, irrespective of stimulus wavelength, and the responses in photopic as well as scotopic conditions were found to be subserved by a single photopigment with λmax = 500 nm. The process of adaptation was studied by recording simultaneously the threshold responses and membrane potentials of S-units during both light and dark adaptation. The findings indicate that the sensitivity of S-units, whether measured upon steady background fields or in the course of dark adaptation, exhibits changes similar to those demonstrated previously for the ERG b-wave and ganglion cell discharge. However, the membrane potential level of the S-unit and its sensitivity to photic stimulation varied independently for all the adapting conditions tested. It appears, therefore, that visual adaptation in the skate retina occurs before the S-unit is reached, i.e., at the receptors themselves.  相似文献   

18.
In the vertebrate retina the presence of synaptic ribbons (SRs) is well documented in two sites only, viz., in photoreceptor axon terminals in the outer plexiform layer and in bipolar cell axons in the inner plexiform layer. The present paper reports the presence of non-photoreceptor SRs in the outer plexiform layer of cattle and mouse, where they were seen in small numbers in thin cell processes near cone pedicles of light-adapted animals. They were never seen near rod spherules. Quantitative data obtained in mice killed at different time-points revealed that the SRs under consideration increased in number during day time and were absent during the dark phase. Moreover, under high light intensity of 10000 lux they were more frequent in number compared to 100-lux-exposed animals. It is concluded that the cell processes revealing the temporary presence of SRs are processes of flat bipolar cells which may provide a feedback to cones during the light phase.  相似文献   

19.
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.  相似文献   

20.
In the present study we investigated in vivo the effects of pharmacological manipulation of retinal processing on the response properties of direction selective retinal slip cells in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN), the key visuomotor interface in the pathway underlying the optokinetic reflex. Employing a moving visual stimulus consisting of either a large dark or light edge we could differentiate direction selective ON and OFF responses in retinal slip cells. To disclose the origin of the retinal slip cells' unexpected OFF response we selectively blocked the retinal ON channels and inactivated the visual cortex by cooling. Cortical cooling had no effect on the direction selectivity of the ON or the OFF response in NOT-DTN retinal slip cells. Blockade of the retinal ON channel with APB led to a loss of the ON and, to a lesser degree, of the OFF response and a reduction in direction selectivity. Subsequent blocking of GABA receptors in the retina with picrotoxin unmasked a vigorous albeit direction unselective OFF response in the NOT-DTN. Disturbing the retinal chloride homeostasis by intraocular injections of bumetanide or furosemide led to a loss of direction selectivity in both the NOT-DTN's ON and the OFF response due to a reduced response in the neuron's preferred direction under bumetanide as well as under furosemide and a slightly increased response in the null direction under bumetanide. Our results indicate that the direction specificity of retinal slip cells in the NOT-DTN of the rat strongly depends on direction selective retinal input which depends on intraretinal chloride homeostasis. On top of the well established input from ON center direction selective ganglion cells we could demonstrate an equally effective input from the retinal OFF system to the NOT-DTN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号