首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis (programmed cell death) is common to all multicellular organisms. Apoptosis plays a central role in cell differentiation, removal of damaged cells, and the homeostasis of the immune system. There are two apoptosis signal pathways: the extrinsic (transmitted through death receptors (DR)) or the intrinsic (mitochondrial) death pathways. A death receptor, CD95 (Fas/APO-1), was discovered 20 years ago. This review is focused on the mechanisms of death receptor-induced apoptosis via CD95 (Fas/APO-1)-mediated apoptosis and the role of the antiapoptotic protein c-FLIP in the extrinsic apoptosis regulation. The regulation of this pathway is crucial for the immune system. Defects in the regulation of CD95-mediated result in serious diseases such as cancer, autoimmunity, and AIDS. Therefore, gaining insights into apoptosis will have wide implications for developing approaches to treatment strategies of these diseases.  相似文献   

2.
Programmed cell death (apoptosis) is a normally occurring process used to eliminate unnecessary or potentially harmful cells in multicellular organisms. Recent studies demonstrate that the molecular control of this process is conserved phylogenetically in animals. The dad-1 gene, which encodes a novel 113 amino acid protein, was originally identified in a mutant hamster cell line (tsBN7) that undergoes apoptosis at restrictive temperature. We have identified a dad-1 homologue in Caenorhabditis elegans (Ce-dad-1) whose predicted product is > 60% identical to vertebrate DAD-1. A search of the sequence databases indicated that DAD-1-like proteins are also expressed in two plant species. Expression of either human dad-1 or Ce-dad-1 under control of a C.elegans heat-shock-inducible promoter resulted in a reduction in the number of programmed cell death corpses visible in C.elegans embryos. Extra surviving cells were present in these animals, indicating that both the human and C.elegans dad-1 genes can suppress developmentally programmed cell death. Ce-dad-1 was found to rescue mutant tsBN7 hamster cells from apoptotic death as efficiently as the vertebrate genes. These results suggest that dad-1, which is necessary for cell survival in a mammalian cell line, is sufficient to suppress some programmed cell death in C.elegans.  相似文献   

3.
4.
Apoptosis or programmed cell death is an important process to eliminate unnecessary or hazardous cells. Apaf-1, a mammalian homologue of CED-4 of C. elegans, is the essential adaptor molecule in the mitochondrial pathway of apoptosis. Mice lacking Apaf-1 show accumulation of neurons in the developing central nervous system due to reduced apoptosis. Apaf-1-deficient cells are remarkably resistant to various apoptotic stimuli. Apaf-1-mediated apoptosis plays a role in the prevention of tumorigenesis. However, Apaf-1-independent cell death pathways are also indicated. In this review, we will summarize what has been learned about the role of Apaf-1 by biochemical and genetical approaches.  相似文献   

5.
Activation of the cell surface receptor Fas/APO-1 (CD95) induces apoptosis in lymphocytes and regulates immune responses. The cytoplasmic membrane protein Bcl-2 inhibits lymphocyte killing by diverse cytotoxic agents, but we found it provided little protection against Fas/APO-1-transduced apoptosis in B lymphoid cell lines, thymocytes and activated T cells. In contrast, the cowpox virus protease inhibitor CrmA blocked Fas/APO-1-transduced apoptosis, but did not affect cell death induced by gamma-radiation or serum deprivation. Signalling through Fas/APO-1 did not down-regulate Bcl-2 or induce its antagonists Bax and Bcl-xS. In Fas/APO-1-deficient lpr mice, Bcl-2 transgenes markedly augmented the survival of antigen-activated T cells and the abnormal accumulation of lymphocytes (although they did not interfere with deletion of auto-reactive cells in the thymus). These data raise the possibility that Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis.  相似文献   

6.
Apaf1 and the apoptotic machinery   总被引:8,自引:0,他引:8  
The molecular characterization of the Caenorhabditis elegans cell death genes has been crucial in revealing some of the biochemical mechanisms underlying apoptosis in all animals. Four C. elegans genes, egl-1, ced-9, ced-4 and ced-3 are required for all somatic programmed cell death to occur. This genetic network is highly conserved during evolution. The pro-death gene egl-1 and the anti-death gene ced-9 have structural and functional similarities to the vertebrate Bcl2 gene family. The killer gene ced-3 encodes a cystein-aspartate protease (caspase), which is the archetype of a family of conserved proteins known as effectors of apoptosis in mammals. Zou and collaborators1 reported the biochemical identification of an apoptotic protease activating factor (Apaf1), a human homolog of C. elegans CED-4, providing important clues to how CED-4 and its potential relatives could work. A number of proteins have been shown to interact with Apaf1 or to be determinant for its activity as an apoptotic adapter. The aim of this review is to provide an overview of the recent progress made in the field of developmental apoptosis by means of the murine Apaf1 targeted mutations. The central role of Apaf1 in the cell death machinery (apoptosome) and its involvement in different apoptotic pathways will also be discussed.  相似文献   

7.
Programmed cell death, or apoptosis, occurs throughout the course of normal development in most animals and can also be elicited by a number of stimuli such as growth factor deprivation and viral infection. Certain morphological and biochemical characteristics of programmed cell death are similar among different tissues and species. During development of the nematode Caenorhabditis elegans, a single genetic pathway promotes the death of selected cells in a lineally fixed pattern. This pathway appears to be conserved among animal species. The baculovirus p35-encoding gene (p35) is an inhibitor of virus-induced apoptosis in insect cells. Here we demonstrate that expression of p35 in C. elegans prevents death of cells normally programmed to die. This suppression of developmentally programmed cell death results in appearance of extra surviving cells. Expression of p35 can rescue the embryonic lethality of a mutation in ced-9, an endogenous gene homologous to the mammalian apoptotic suppressor bcl-2, whose absence leads to ectopic cell deaths. These results support the hypothesis that viral infection can activate the same cell death pathway as is used during normal development and suggest that baculovirus p35 may act downstream or independently of ced-9 in this pathway.  相似文献   

8.
L P Deiss  H Galinka  H Berissi  O Cohen    A Kimchi 《The EMBO journal》1996,15(15):3861-3870
A functional approach of gene cloning was applied to HeLa cells in an attempt to isolate positive mediators of programmed cell death. The approach was based on random inactivation of genes by transfections with antisense cDNA expression libraries, followed by the selection of cells that survived in the presence of the external apoptotic stimulus. An antisense cDNA fragment identical to human cathepsin D aspartic protease was rescued by this positive selection. The high cathepsin D antisense RNA levels protected the HeLa cells from interferon-gamma- and Fas/APO-1-induced death. Pepstatin A, an inhibitor of cathepsin D, suppressed cell death in these systems and interfered with the TNF-alpha-induced programmed cell death of U937 cells as well. During cell death, expression of cathepsin D was elevated and processing of the protein was affected, which resulted in high steady-state levels of an intermediate, proteolytically active, single chain form of this protease. Overexpression of cathepsin D by ectopic expression induced cell death in the absence of any external stimulus. Altogether, these results suggest that this well-known endoprotease plays an active role in cytokine-induced programmed cell death, thus adding cathepsin D to the growing list of proteases that function as positive mediators of apoptosis.  相似文献   

9.
Pathways of apoptosis and importance in development   总被引:4,自引:0,他引:4  
The elimination of cells by programmed cell death is a fundamental event in development where multicellular organisms regulate cell numbers or eliminate cells that are functionally redundant or potentially detrimental to the organism. The evolutionary conservation of the biochemical and genetic regulation of programmed cell death across species has allowed the genetic pathways of programmed cell death determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster to act as models to delineate the genetics and regulation of cell death in mammalian cells. These studies have identified cell autonomous and non-autonomous mechanisms that regulate of cell death and reveal that developmental cell death can either be a pre-determined cell fate or the consequence of insufficient cell interactions that normally promote cell survival.  相似文献   

10.
11.
The APO-1 antigen as defined by the mouse monoclonal antibody anti-APO-1 was previously found to be expressed on the cell surface of activated human T and B lymphocytes and a variety of malignant human lymphoid cell lines. Cross-linking of the APO-1 antigen by anti-APO-1 induced programmed cell death, apoptosis, of APO-1 positive cells. To characterize the APO-1 cell surface molecule and to better understand its role in induction of apoptosis, the APO-1 protein was purified to homogeneity from membranes of SKW6.4 B lymphoblastoid cells by solubilization with sodium deoxycholate, affinity chromatography with anti-APO-1 antibody, and reversed phase high performance liquid chromatography. Each purification step was followed by an APO-1-specific solid phase enzyme-linked immunosorbent assay using the monoclonal antibody anti-APO-1. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the APO-1 antigen was found to be a membrane glycoprotein of 48-kDa. Endoproteinase-cleaved peptides of the APO-1 protein were subjected to amino acid sequencing, and corresponding oligonucleotides were used to identify a full-length APO-1 cDNA clone from an SKW6.4 cDNA library. The deduced amino acid sequence of APO-1 showed sequence identity with the Fas antigen, a cysteine-rich transmembrane protein of 335 amino acids with significant similarity to the members of the tumor necrosis factor/nerve growth factor receptor superfamily. The APO-1 antigen was expressed upon transfection of APO-1 cDNA into BL60-P7 Burkitt's lymphoma cells and conferred sensitivity towards anti-APO-1-induced apoptosis to the transfectants.  相似文献   

12.
13.
14.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

15.
Similar to mammalian excitotoxic cell death, necrotic-like cell death (NCD) in Caenorhabditis elegans can be initiated by hyperactive ion channels. Here we investigate the requirements for genes that execute and regulate programmed cell death (PCD) in necrotic-like neuronal death caused by a toxic MEC-4 channel. Neither the kinetics of necrosis onset nor the total number of necrotic corpses generated is altered by any C. elegans mutation known to block PCD, which provides genetic evidence that the activating mechanisms for NCD and apoptotic cell death are distinct. In contrast, all previously reported ced genes required for phagocytotic removal of apoptotic corpses, as well as ced-12, a new engulfment gene we have identified, are required for efficient elimination of corpses generated by distinct necrosis-inducing stimuli. Our results show that a common set of genes acts to eliminate cell corpses irrespective of the mode of cell death, and provide the first identification of the C. elegans genes that are required for orderly removal of necrotic cells. As phagocytotic mechanisms seem to be conserved from nematodes to humans, our findings indicate that injured necrotic cells in higher organisms might also be eliminated before lysis through a controlled process of corpse removal, a hypothesis that has significant therapeutic implications.  相似文献   

16.
Apoptosis is an evolutionarily conserved process that is critical for tissue homeostasis and development including sex determination in essentially all multicellular organisms. Here, we report the cloning of an ankyrin repeat-containing protein, termed F1Aalpha, in a yeast two-hybrid screen using the cytoplasmic domain of Fas (CD95/APO-1) as bait. Amino acid sequence analysis indicates that F1Aalpha has extensive homology to the sex-determining protein FEM-1 of the Caenorhabditis elegans, which is required for the development of all aspects of the male phenotype. F1Aalpha associates with the cytoplasmic domains of Fas and tumor necrosis factor receptor 1, two prototype members of the "death receptor" family. The F1Aalpha protein also oligomerizes. Overexpression of F1Aalpha induces apoptosis in mammalian cells, and co-expression of Bcl-XL or the dominant negative mutants of either FADD or caspase-9 blocks this effect. Deletion analysis revealed the center region of F1Aalpha, including a cluster of five ankyrin repeats to be necessary and sufficient for maximum apoptotic activity, and the N-terminal region appears to regulate negatively this activity. Furthermore, F1Aalpha is cleaved by a caspase-3-like protease at Asp(342), and the cleavage-resistant mutant is unable to induce apoptosis upon overexpression. F1Aalpha is therefore a member of a growing family of death receptor-associated proteins that mediates apoptosis.  相似文献   

17.
Apoptotic cell suicide initiated by ligation of CD95 (Fas/APO-1) occurs through recruitment, oligomerization and autocatalytic activation of the cysteine protease, caspase-8 (MACH, FLICE, Mch5). An endogenous mammalian regulator of this process, named Usurpin, has been identified (aliases for Usurpin include CASH, Casper, CLARP, FLAME-1, FLIP, I-FLICE and MRIT). This protein is ubiquitously expressed and exists as at least three isoforms arising by alternative mRNA splicing. The Usurpin gene is comprised of 13 exons and is clustered within approximately 200 Kb with the caspase-8 and -10 genes on human chromosome 2q33-34. The Usurpin polypeptide has features in common with pro-caspase-8 and -10, including tandem 'death effector domains' on the N-terminus of a large subunit/small subunit caspase-like domain, but it lacks key residues that are necessary for caspase proteolytic activity, including the His and Cys which form the catalytic substrates diad, and residues that stabilize the P1 aspartic acid in substrates. Retro-mutation of these residues to functional caspase counterparts failed to restore proteolytic activity, indicating that other determinants also ensure the absence of catalytic potential. Usurpin heterodimerized with pro-caspase-8 in vitro and precluded pro-caspase-8 recruitment by the FADD/MORT1 adapter protein. Cell death induced by CD95 (Fas/APO-1) ligation was attenuated in cells transfected with Usurpin. In vivo, a Usurpin deficit was found in cardiac infarcts where TUNEL-positive myocytes and active caspase-3 expression were prominent following ischemia/reperfusion injury. In contrast, abundant Usurpin expression (and a caspase-3 deficit) occurred in surrounding unaffected cardiac tissue, suggesting reciprocal regulation of these pro- and anti-apoptotic molecules in vivo. Usurpin thus appears to be an endogenous modulator of apoptosis sensitivity in mammalian cells, including the susceptibility of cardiac myocytes to apoptotic death following ischemia/ reperfusion injury.  相似文献   

18.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells.  相似文献   

19.
The early signals generated following cross-linking of Fas/APO-1, a transmembrane receptor whose engagement by ligand results in apoptosis induction, were investigated in human HuT78 lymphoma cells. Fas/APO-1 cross-linking by mAbs resulted in membrane sphingomyelin hydrolysis and ceramide generation by the action of both neutral and acidic sphingomyelinases. Activation of a phosphatidylcholine-specific phospholipase C (PC-PLC) was also detected which appeared to be a requirement for subsequent acidic sphingomyelinase (aSMase) activation, since PC-PLC inhibitor D609 blocked Fas/APO-1-induced aSMase activation, but not Fas/APO-1-induced neutral sphingomyelinase (nSMase) activation. Fas/APO-1 cross-linking resulted also in ERK-2 activation and in phospholipase A2 (PLA2) induction, independently of the PC-PLC/aSMase pathway. Evidence for the existence of a pathway directly involved in apoptosis was obtained by selecting HuT78 mutant clones spontaneously expressing a newly identified death domain-defective Fas/APO-1 splice isoform which blocks Fas/APO-1 apoptotic signalling in a dominant negative fashion. Fas/APO-1 cross-linking in these clones fails to activate PC-PLC and aSMase, while nSMase, ERK-2 and PLA2 activates are induced. These results strongly suggest that a PC-PLC/aSMase pathway contributes directly to the propagation of Fas/APO-1-generated apoptotic signal in lymphoid cells.  相似文献   

20.
Engagement of the cell surface receptor Fas/APO-1 (CD95) initiates a sequence of intracellular events that leads to apoptotic cell death, and this outcome occurs in B cells as it does in other cell types. Fas signaling for B cell death is of particular interest because the expression and function of Fas is altered by engagement of additional cell surface receptors, leading to marked receptor-specific variation in susceptibility to Fas-induced apoptosis. Evidence suggests that the sensitivity of B cells to Fas-mediated apoptosis is intimately connected to homeostasis in the serological arm of the immune system and plays a role in the dysregulation that occurs in certain autoimmune and malignant dyscrasias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号