首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

3.
11-cis-Retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5′-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-Retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.11-cis-Retinol is the precursor to 11-cis-retinal, the 11-cis-aldehyde form of vitamin A and the chromophore that combines covalently with rod and cone opsin proteins to form visual pigments. 11-cis-Retinal is consumed during visual signaling, and its continual synthesis is required. Photon absorption by the visual pigments causes the isomerization of its chromophore to the all-trans configuration. This initiates two processes critical for vision: activation of the photoreceptor cell and the eventual recovery of the original photosensitivity of the cells, requiring regeneration of the visual pigments. As cones are used for bright light vision, these two processes must work more rapidly in cones than in rods and thus cones have a higher requirement of 11-cis-retinoids as suggested by Rushton (1, 2).Photoreceptor activation begins with photoisomerization of the chromophore within the visual pigment. This results in a subsequent conformational change of the protein part of the visual pigment that is able to activate its G protein transducin, which in turn activates a PDE that lowers the concentration of cGMP and closes cGMP-gated ion channels. These steps comprise the visual signal transduction cascade (see Ref. 3 for review).The visual cycle involves regeneration of the visual pigment, which ultimately deactivates the protein and accomplishes the recovery of the photosensitivity of the photoreceptor cell. Classically, this process involves both the photoreceptor cell and the retinal pigment epithelium (RPE).4 After photoisomerization of the chromophore and formation of the active visual pigment, all-trans-retinal is released from the opsin and reduced to all-trans-retinol, which is then transported to the RPE where it is isomerized to 11-cis-retinol through a number of steps. In the RPE, 11-cis-retinol is oxidized to the aldehyde form, which is transported back to the photoreceptor cell and can be directly used by all of the opsins to regenerate an inactive pigment ready for photoactivation. The details of this model have been extensively reviewed (4, 5). Alternatively, recent work suggests that cones have an additional source of 11-cis-retinoids from Müller cells (68). Like the RPE cells, Müller cells have been shown to be able to convert all-trans-retinol to 11-cis-retinol (6). Unlike in the RPE cells, 11-cis-retinol is not oxidized to 11-cis-retinal in Müller cells.Jones et al. (9) demonstrated that administration of 11-cis-retinol to bleached salamander red cones could restore photosensitivity. A logical conclusion was that red cones were able to oxidize 11-cis-retinol to the aldehyde and regenerate visual pigments although noncovalent binding of 11-cis-retinol to red cone opsins generating a light-sensitive complex could not be excluded. On the other hand, 11-cis-retinol does not restore photosensitivity to bleached salamander rod cells but appears to directly activate the cells (9, 10). The data suggested that the rods were not able to oxidize 11-cis-retinol, but that the retinol itself could activate the signal transduction cascade, and indeed we recently demonstrated that 11-cis-retinol acts as an agonist to expressed bovine rod opsin (11). Our aim here was to study the action of 11-cis-retinol on cone opsins and cone photoreceptor cells to determine the efficacy of an alternate visual cycle for cones.The photoreceptor cells used in this study are from tiger salamander, and the expressed opsins used for biochemical experiments are those from salamander and human. Photoreceptor cells are generally identified by cell morphology and the type of opsin it contains that can be further complicated by the findings that some cone cells have multiple opsins (12, 13). Recently genetic analysis has determined that opsins fall into five classes (reviewed in Refs. 14 and 15). We have studied opsins falling into four of these classes and use common color-derived names for the opsins and photoreceptor cells. The classic rod cells used for scotopic vision contain rhodopsin, the visual pigment for the rod opsin (RH1 opsin) and appeared red and thus have been designated as red rods. Some species such as salamanders have an additional rod cell whose photosensitivity is blue-shifted from that of the red rod and thus designated as green rods. In the tiger salamander, the green rods contain the identical opsin (SWS2 opsin) found in blue cones (16). The human blue cones contain an opsin from a different class (SWS1 opsin), which is homologous to the salamander UV cone opsin. The human red and green and salamander red cone opsins all belong to the same class of opsins (M/LWS opsins). Absorption properties of visual pigments are further modulated in some animals including the tiger salamander by use of 11-cis-retinal with an additional double bond (3,4-dehydro or A2 11-cis-retinal) resulting in red-shifted absorbance from pigments containing 11-cis-retinal (A1 11-cis-retinal).We show here that 11-cis-retinol is not an agonist to cone opsins and does not itself generate a light-sensitive opsin. We further show using microspectrophotometry that both red and blue salamander cone cells regenerate visual pigments from 11-cis-retinol, whereas pigments could not be regenerated with 11-cis-retinol in bleached salamander red and green rods even though the latter contains the same opsin as the salamander blue cone. Thus, rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type, and these mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.  相似文献   

4.
Sato K  Yamashita T  Ohuchi H  Shichida Y 《Biochemistry》2011,50(48):10484-10490
VA/VAL opsin is one of the four kinds of nonvisual opsins that are closely related to vertebrate visual pigments in the phylogenetic tree of opsins. Previous studies indicated that among these opsins, parapinopsin and pinopsin exhibit molecular properties similar to those of invertebrate bistable visual pigments and vertebrate visual pigments, respectively. Here we show that VA/VAL opsin exhibits molecular properties intermediate between those of parapinopsin and pinopsin. VAL opsin from Xenopus tropicalis was expressed in cultured cells, and the pigment with an absorption maximum at 501 nm was reconstituted by incubation with 11-cis-retinal. Light irradiation of this pigment caused cis-to-trans isomerization of the chromophore to form a state having an absorption maximum in the visible region. This state has the ability to activate Gi and Gt types of G proteins. Therefore, the active state of VAL opsin is a visible light-absorbing intermediate, which probably has a protonated retinylidene Schiff base as its chromophore, like the active state of parapinopsin. However, this state was apparently photoinsensitive and did not show reverse reaction to the original pigment, unlike the active state of parapinopsin, and instead similar to that of pinopsin. Furthermore, the Gi activation efficiency of VAL opsin was between those of pinopsin and parapinopsin. Thus, the molecular properties of VA/VAL opsin give insights into the mechanism of conversion of the molecular properties from invertebrate to vertebrate visual pigments.  相似文献   

5.
Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.  相似文献   

6.
We report the expression of three visual opsins in the retina of the little brown bat (Myotis lucifugus, Vespertilionidae). Gene sequences for a rod-specific opsin and two cone-specific opsins were cloned from cDNA derived from bat eyes. Comparative sequence analyses indicate that the two cone opsins correspond to an ultraviolet short-wavelength opsin (SWS1) and a long-wavelength opsin (LWS). Immunocytochemistry using antisera to visual opsins revealed that the little brown bat retina contains two types of cone photoreceptors within a rod-dominated background. However, unlike other mammalian photoreceptors, M. lucifugus cones and rods are morphologically indistinguishable by light microscopy. Both photoreceptor types have a thin, elongated outer segment. Using microspectrophotometry we classified the absorption spectrum for the ubiquitous rods. Similar to other mammals, bat rhodopsin has an absorption peak near 500 nm. Although we were unable to confirm a spectral range, cellular and molecular analyses indicate that M. lucifugus expresses two types of cone visual pigments located within the photoreceptor layer. This study provides important insights into the visual capacity of a nocturnal microchiropteran species.  相似文献   

7.
Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions.  相似文献   

8.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

9.
Cone short-wave (SWS1) visual pigments can be divided into two categories that correlate with spectral sensitivity, violet sensitive above 390 nm and ultraviolet sensitive below that wavelength. The evolution and mechanism of spectral tuning of SWS1 opsins are proving more complex than those of other opsin classes. Violet-sensitive pigments probably evolved from an ancestral ultraviolet-sensitive opsin, although in birds ultraviolet sensitivity has re-evolved from violet-sensitive pigments. In certain mammals, a single substitution involving the gain of a polar residue can switch sensitivity from ultraviolet to violet sensitivity, but where such a change is not involved, several substitutions may be required to effect the switch. The guinea pig, Cavia porcellus, is a hystricognathous rodent, a distinct suborder from the Sciurognathi, such as rats and mice. It has been shown by microspectrophotometry to have two cone visual pigments at 530 and 400 nm. We have ascertained the sequence of the short-wave pigment and confirmed its violet sensitivity by expression and reconstitution of the pigment in vitro. Moreover, we have shown by site-directed mutagenesis that a single residue is responsible for wavelength tuning of spectral sensitivity, a Val86Phe causing a 60 nm short-wave shift into the ultraviolet and a Val86Tyr substitution shifting the pigment 8 nm long wave. The convergent evolution of this mammalian VS pigment provides insight into the mechanism of tuning between the violet and UV.  相似文献   

10.
This paper documents the molecular organization of the eye of the Eastern Pale Clouded Yellow butterfly, Colias erate (Pieridae). We cloned four cDNAs encoding visual pigment opsins, corresponding to one ultraviolet, two blue and one long wavelength-absorbing visual pigments. Duplication of the blue visual pigment class occurs also in another pierid species, Pieris rapae, suggesting that blue duplication is a general feature in the family Pieridae. We localized the opsin mRNAs in the Colias retina by in situ hybridization. Among the nine photoreceptor cells in an ommatidium, R1-9, we found that R3-8 expressed the long wavelength class mRNA in all ommatidia. R1 and R2 expressed mRNAs of the short wavelength opsins in three fixed combinations, corresponding to three types of ommatidia. While the duplicated blue opsins in Pieris are separately expressed in two subsets of R1-2 photoreceptors, one blue sensitive and another violet sensitive, those of Colias appear to be always coexpressed.  相似文献   

11.
Spectral tuning of visual pigments is typically accomplished through changes in opsin amino acid sequence. Within a given opsin class, changes at a few key sites control wavelength specificity. To investigate known differences in the visual pigment spectral sensitivity of the Lake Malawi cichlids, Metriaclima zebra (368, 488, and 533 nm) and Dimidiochromis compressiceps (447, 536, and 569 nm), we sequenced cone opsin genes from these species as well as Labeotropheus fuelleborni and Oreochromis niloticus. These cichlids have five distinct classes of cone opsin genes, including two unique SWS-2 genes. Comparisons of the inferred amino acid sequences from the five cone opsin genes of M. zebra, D. compressiceps, and L. fuelleborni show the sequences to be nearly identical. Therefore, evolution of key opsin sites cannot explain the differences in visual pigment sensitivities. Real-time PCR demonstrates that different cichlid species express different subsets of the available cone opsin genes. Metriaclima zebra and L. fuelleborni express a complement of genes which give them UV-shifted visual pigments, while D. compressiceps expresses a different set to produce a red-shifted visual system. Thus, variations in cichlid spectral sensitivity have arisen through evolution of gene regulation, rather than through changes in opsin amino acid sequence.  相似文献   

12.
Matsumoto Y  Fukamachi S  Mitani H  Kawamura S 《Gene》2006,371(2):268-278
A variety of visual pigment repertoires present in fish species is believed due to the great variation under the water of light environment. A complete set of visual opsin genes has been isolated and characterized for absorption spectra and expression in the retina only in zebrafish. Medaka (Oryzias latipes) is a fish species phylogenetically distant from zebrafish and has served as an important vertebrate model system in molecular and developmental genetics. We previously isolated a medaka rod opsin gene (RH1). In the present study we isolated all the cone opsin genes of medaka by genome screening of a lambda-phage and bacterial artificial chromosome (BAC) libraries. The medaka genome contains two red, LWS-A and LWS-B, three green, RH2-A, RH2-B and RH2-C, and two blue, SWS2-A and SWS2-B, subtype opsin genes as well as a single-copy of the ultraviolet, SWS1, opsin gene. Previously only one gene was believed present for each opsin type as reported in a cDNA-based study. These subtype opsin genes are closely linked and must be the products of local gene duplications but not of a genome-wide duplication. Peak absorption spectra (lambda(max)) of the reconstituted photopigments with 11-cis retinal varied greatly among the three green opsins, 452 nm for RH2-A, 516 nm for RH2-B and 492 nm for RH2-C, and between the two blue opsins, 439 nm for SWS2-A and 405 nm for SWS2-B. Zebrafish also has multiple opsin subtypes, but phylogenetic analysis revealed that medaka and zebrafish gained the subtype opsins independently. The lambda and BAC DNA clones isolated in this study could be useful for investigating the regulatory mechanisms and evolutionary diversity of fish opsin genes.  相似文献   

13.
Wavelength regulation in iodopsin, a cone pigment.   总被引:3,自引:2,他引:1       下载免费PDF全文
The opsin shift, the difference in wavenumber between the absorption peak of a visual pigment and the protonated Schiff base of the chromophore, represents the influence of the opsin binding site on the chromophore. The opsin shift for the chicken cone pigment iodopsin is much larger than that for rhodopsin. To understand the origin of this opsin shift and the mechanism of wavelength regulation in iodopsin, a series of synthetic 9-cis and 11-cis dehydro- and dihydro-retinals was used to regenerate iodopsin-based pigments. The opsin shifts of these pigments are quite similar to those found in bacteriorhodopsin-based artificial pigments. On the basis of these studies, a tentative model of wavelength regulation in iodopsin is proposed.  相似文献   

14.
A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.  相似文献   

15.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

16.
The compound eye of the butterfly Papilio xuthus is composed of three spectrally distinct types of ommatidia. We investigated the blue and double-peaked green receptors that are encountered distally in type I and III ommatidia, by means of intracellular recordings, in vivo fluorescence microscopy, and histology. The blue receptors are R1 and/or R2 photoreceptors; they contain the same mRNA encoding the opsin of the blue-absorbing visual pigment. However, here we found that the sensitivity in the UV wavelength region strongly depends on the ommatidial type; the blue receptors in type I ommatidia have a distinctly depressed UV sensitivity, which is attributed to lateral filtering in the fused rhabdom. In the main, fronto-ventral part of the eye, the R3 and R4 photoreceptors of all ommatidia contain the same set of two mRNAs encoding the opsins of green-absorbing visual pigments, PxL1 and PxL2. The spectral sensitivities are double-peaked, but the UV sensitivity of the R3 and R4 photoreceptors in type I ommatidia appears to be reduced, similar to that of the co-localized blue receptors.  相似文献   

17.
The tiered ommatidia of the Eastern Pale Clouded yellow butterfly, Colias erate, contain nine photoreceptor cells, four of which contribute their rhabdomeral microvilli to the distal tier of the rhabdom. We analyzed the visual pigments and spectral sensitivities of these distal photoreceptors in both sexes of Colias erate. A subset of photoreceptor cells expresses a newly discovered middle wavelength-absorbing opsin, C olias e rate Blue (CeB), in addition to two previously described middle wavelength-absorbing opsins, CeV1 and CeV2. The other photoreceptors either coexpress CeV1 and CeV2, or exclusively express a short wavelength-absorbing opsin, CeUV, or a long wavelength-absorbing opsin, CeL. Males and females have the same visual pigment expression patterns, but the photoreceptor spectral sensitivities are sexually dimorphic. The photoreceptors coexpressing three middle wavelength-absorbing opsins are broad-blue receptors in males, but in females they are narrow-blue receptors. Those with CeV1 and CeV2 are violet receptors in females, while they are shouldered-blue receptors in males. The sexual dimorphism in spectral sensitivity is caused by a sex-specific distribution of fluorescent pigment that functions as a spectral filter.  相似文献   

18.
The visual system plays a role in nearly every aspect of an organism??s life history, and there is a direct link between visual pigment phenotypes and opsin genotypes. In previous studies of African cichlid fishes, we found evidence for positive selection among some opsins, with sequence variation greatest for opsins producing the shortest and longest wavelength visual pigments. In this study, we examined opsin evolution in the closely related damselfish family (Pomacentridae), a group of reef fishes that are distributed widely and have a documented fossil record of at least 50?million years (MY). We found increased functional variation in the protein sequences of opsins at the short- and long-wavelength ends of the visual spectrum, in agreement with the African cichlids, despite an order of magnitude difference in the ages of the two radiations. We also reconstructed amino acid substitutions across opsin tuning sites. These reconstructions indicated multiple instances of parallel evolution, at least one definitive case of convergent evolution, and one evolutionary reversal. Our findings show that the amino acids at spectral tuning sites are labile evolutionarily, and that the same codons evolve repeatedly. These findings emphasize that the aquatic light environment can shape opsin sequence evolution. They further show that phylogenetic approaches can provide important insights into the mechanisms by which natural selection ??tinkers?? with phenotypes.  相似文献   

19.
ABSTRACT: BACKGROUND: Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial to understand the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. RESULTS: Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. CONCLUSIONS: Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a functional explanation. From the opsin phylogeny, we conclude that gene duplications, which permitted differential opsin expression in insect ocelli and compound eyes, occurred independently in several insect lineages and are recent compared to the origin of the eyes themselves.  相似文献   

20.
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号